Cho tứ diện ABCD có độ dài các cạnh AB=AC=AD=BC=BD=a và C D = a 2 . Góc giữa hai đường thẳng AD và BC bằng
A. 30 °
B. 90 °
C. 45 °
D. 60 °
Cho tứ diện ABCD có độ dài các cạnh AB = AC = AD = BC = BD = a . Góc giữa hai đường AB và CD
Cho tứ diện ABCD có AB = CD = a. Gọi M và N lần lượt là trung điểm của AD và BC. Xác định độ dài đoạn thẳng MN để góc giữa hai đường thẳng AB và MN bằng 30 ° .
A. M N = a 2
B. M N = a 3 2
C. M N = a 3 3
D. M N = a 4
Đáp án B
Gọi E là trung điểm AC
Khi đó NE//AB suy ra A B ; M N ^ = N E ; M N ^
Do đó [ E N M ^ = 30 ° E N M ^ = 150 °
Lại có N E = A B 2 = a 2 ; M E = a 2 nên tam giác MNE cân tại E suy ra E N M ^ = 30 ° ⇒ N E M ^ = 120 °
Suy ra M N = M E 2 + N E 2 - 2 M E . N E . cos N E M ^ = a 3 2 .
Cho tứ diện ABCD có A B = C D = a . Gọi M và N lần lượt là trung điểm của AD và BC. Xác định độ dài đoạn thẳng MN để góc giữa hai đường thẳng AB và MN bằng 30 ° .
A. M N = a 2
B. M N = a 3 2
C. M N = a 3 3
D. M N = a 4
Cho tứ diện ABCD có AB=CD=a, AC=BD=b, AD=BC=c
a, chứng minh: các đoạn nối trung điểm các cặp cạnh đối diện thì vuông góc với 2 cạnh đó
b, Tính cos góc giữa 2 đường thẳng AC và BD
Cho tứ diện ABCD có AB=CD=a, AC=BD=b, AD=BC=c
a, chứng minh: các đoạn nối trung điểm các cặp cạnh đối diện thì vuông góc với 2 cạnh đó
b, Tính cos góc giữa 2 đường thẳng AC và BD
Cho tứ diện ABCD có AB=CD=a, AC=BD=b, AD=BC=c
a, chứng minh: các đoạn nối trung điểm các cặp cạnh đối diện thì vuông góc với 2 cạnh đó
b, Tính cos góc giữa 2 đường thẳng AC và BD
Cho tứ diện ABCD có AB = CD = a, AC=BD=b, AD=BC=b. Tính cosin góc giữa đường thẳng AC và BD
A . 3 b 2 - a 2 c 2
B . b 2 - a 2 c 2
C . c 2 - a 2 b 2
D . 3 c 2 - a 2 b 2
Cho tứ diện ABCD có AB=CD=a, AC=BD=b, AD=BC=c. Khoảng cách giữa hai đường thẳng AB và CD là
A. 1 2 b 2 + c 2 - a 2
B. 1 2 b 2 + c 2 + a 2
C. 1 4 b 2 + c 2 - a 2
D. 1 4 b 2 + c 2 + a 2
Chọn A
Gọi M,N lần lượt là trung điểm của AB và CD.
Khi đó