Trong không gian Oxyz, mặt phẳng P : 2 x − y + 3 z − 1 = 0 có một vectơ pháp tuyến là:
A. n 1 → = 2 ; − 1 ; 3 .
B. n 2 → = 2 ; − 1 ; − 1 .
C. n 3 → = − 1 ; 3 ; − 1 .
D. n 4 → = 2 ; − 1 ; − 3 .
Trong không gian Oxyz, cho mặt phẳng P : 2 x - 2 y + z + 5 = 0 Trong không gian Oxyz, cho mặt phẳng ∆ có phương trình tham số x = - 1 + t y = 2 - t z = - 3 - 4 t . Khoảng cách giữa đường thẳng ∆ và mặt phẳng (P) bằng:
A. - 4 3
B. 4 3
C. 2 3
D. 4 9
Trong không gian Oxyz, mặt phẳng (P): x-y+3=0. Vectơ nào sau đây không phải là vec tơ pháp tuyến của mặt phẳng (P)
A. (3;-3;0)
B. (1;-1;3)
C. (1;-1;0)
D. (-1;1;0)
Trong không gian tọa độ Oxyz, cho mặt phẳng (P): x+y-2z+3=0. Một vecto pháp tuyến của mặt phẳng (P) là:
A. (1;1;-2)
B. (0;0;-2)
C. (1;-2;1)
D. (-2;1;1)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x+y+z-7=0 và đường thẳng d : x - 3 - 2 = y + 8 4 = z - 1 . Phương trình mặt phẳng (Q) chứa d đồng thời vuông góc với mặt phẳng (P) là:
Trong không gian Oxyz, mặt phẳng nào trong các mặt phẳng sau song song với đường thẳng d: x - 1 1 = y - 2 - 2 = z + 2 1
A. (P): z + 2y + 3z = 5
B. (Q): 3x - y -2z = 5
C. ( α ) : 3x - 3y + z = 5
D. (K): 3x - 3y + z = 0
Trong không gian Oxyz cho điểm A(1;2;3) và mặt phẳng (P): x + y + z + 3 = 0. Khoảng cách từ A đến mặt phẳng (P) bằng
A. 3 3 .
B. 4 3 .
C. 2 3 .
D. 3 .
Đáp án A
Áp dụng công thức tính khoảng cách từ một điểm đến một mặt phẳng em có
d A , P = 1 + 2 + 3 + 3 1 2 + 1 2 + 1 2 = 3 3 .
Trong không gian (Oxyz), cho mặt phẳng (P) x+y+z-1=0. Điểm nào sau đây không thuộc mặt phẳng?
A. K(0;0;1)
B. J(0;1;0)
C. (1;0;0)
D. (0;0;0)
Trong không gian Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y - 2 ) 2 + ( z - 3 ) 2 = 81 . Mặt phẳng tiếp xúc (S) tại điểm P(-5;-4;6) là:
A. x-4z+29 = 0.
B. 2x+2y-z+24 = 0.
C. 4x+2y-9z+82 = 0.
D. 7x+8y+67 = 0
Trong không gian Oxyz, mặt phẳng (P): x+y+z-3=0đi qua điểm nào dưới đây
A. C(2;0;0)
B. B(0;1;1)
C. D(0;1;0)
D. A(1;1;1)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng ( P ) : x + y + z - 7 = 0 và đường thẳng d : x - 3 - 2 = y + 8 4 = z - 1 . Phương trình mặt phẳng (Q) chứa d đồng thời vuông góc với mặt phẳng (P) là:
A. (Q): 5x+y-6z+7=0
B. (Q): 5x-y-6z+7=0
C. (Q): 5x+y-6z-7=0
D. (Q): 5x-y-6z+-=0