Cho hàm số y=f(x) có đạo hàm trên R là f ' x = x - 1 x + 3 Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-10;20] để hàm số y = f x 3 + 3 x - m đồng biến trên khoảng (0;2)?
A. 18
B. 17
C. 16
D. 20
Cho hàm số y=f(x) có đạo hàm trên R. Đường cong hình vẽ bên là đồ thị hàm số y=f '(x) (Hàm số y=f '(x) liên tục trên R. Xét hàm số g ( x ) = f ( x 2 - 2 ) . Mệnh đề nào dưới đây là sai?
A. Hàm số y=g(x) đồng biến trên khoảng (-2;-1)
B. Hàm số y=g(x) đồng biến trên khoảng 2 ; + ∞
C. Hàm số y=g(x) nghịch biến trên khoảng (-1;0)
D. Hàm số y=g(x) nghịch biến trên khoảng (0;2)
Cho hàm số y= f(x) có đạo hàm trên R và đồ thị hình bên dưới là đồ thị của đạo hàm số : y= f’(x) . Hàm số y= g(x) = f(x) + x đạt cực tiểu tại điểm
A. x= 0
B.x= 1
C. x= 2
D. Không có điểm cực tiểu
Cho hàm số y= f( x) có đạo hàm là hàm số y= f’(x) trên R. Biết rằng hàm số y= f’ ( x-2) + 2 có đồ thị như hình vẽ bên dưới. Hàm số y= f( x) nghịch biến trên khoảng nào?
A. .
B. (- 1; 1)
C. .
D. .
Cho hàm số y=f(x) có đạo hàm trên R. Đồ thị của hàm số y=f’(x) như hình vẽ bên, hàm số y = g ( x ) = f ( x ) + 1 2 x 2 + x + 1 . Mệnh đề nào dưới đây là sai?
A. Hàm số y=g(x) đồng biến trên khoảng (-∞;-3)
B. Hàm số y=g(x) có 3 cực trị
C. Hàm số y=g(x)đặt cực đại tại x=3
D. Hàm số y=g(x)đặt cực đại tại x=-3
Cho hàm số \(y = f(x)\) xác định trên \(R\) có đạo hàm \(f'(x)=-(x+2)(x-1)^2(x-3)\)
Số điểm cực tiểu của hàm số \(f(x^2-2x)\) là?
\(f'\left(x\right)=0\Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\) (chỉ quan tâm nghiệm bội lẻ)
\(g\left(x\right)=f\left(x^2-2x\right)\)
\(g'\left(x\right)=2\left(x-1\right)f'\left(x^2-2x\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\f'\left(x^2-2x\right)=0\end{matrix}\right.\)
\(f'\left(x^2-2x\right)=0\Rightarrow\left[{}\begin{matrix}x^2-2x=-2\\x^2-2x=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
BBT:
Từ BBT ta thấy \(f\left(x^2-2x\right)\) có 1 cực tiểu
Cho hàm số y=f(x) có đạo hàm f’(x) trên R thỏa mãn f 2 1 + 2 x = x − f 3 1 − x . Tiếp tuyến của đồ thị hàm số y=f(x) tại điểm có hoành độ x=1 là
A. y = − 1 7 x − 6 7 .
B. y = 1 7 x − 8 7 .
C. y = - 1 7 x + 8 7 .
D. y = − x + 6 7 .
Cho hàm số y = f (x) xác định trên R và có đạo hàm f’(x) thỏa f’(x) = (1–x)(x+2)g(x)+2018 với g(x) < 0, ∀ x ∈ R . Hàm số y = f(1 – x) + 2018x + 2019 nghịch biến trên khoảng nào?
A. 1 ; + ∞
B. 0 ; 3
C. - ∞ ; 3
D. 3 ; + ∞
Đáp án D
Ta có Đáp án D
Ta có y’ = –f’(1 – x) + 2018 = –[1–(1–x)][(1–x)+2]g(1–x) – 2018 + 2018
= –x(3–x)g(1–x)
Suy ra (vì g(1–x) < 0, ∀ x ∈ R )
Vậy hàm số đã cho nghịch biến trên khoảng 3 ; + ∞
Cho hàm số y = f(x) có đạo hàm trên R và đồ thị hình bên dưới là đồ thị của đạo hàm f’(x) .
Hỏi hàm số y= g( x) = f( x) + 3x có bao nhiêu điểm cực trị ?
A. 2.
B. 3.
C. 4.
D. 7.
Cho hàm số f(x) có đạo hàm f'(x) trên R. Hình vẽ bên là đồ thị của hàm số f'(x) trên R.
Hỏi hàm số y = f x + 2018 có bao nhiêu điểm cực trị?
A. 4
B. 5
C. 7
D. 3
Cho hàm số y= f( x) có đạo hàm là hàm số f’(x) trên R. Biết rằng hàm số có đồ thị như hình vẽ bên dưới. Hàm số y= f(x) nghịch biến trên khoảng nào?
A. (-3; -1) và (1; 3).
B. (-1; 1) và (3; 5).
C. .
D. (- 5; -3) và (-1; 1).