Cho hàm số y= f(x) có đạo hàm trên R và đồ thị hình bên dưới là đồ thị của đạo hàm số : y= f’(x) . Hàm số y= g(x) = f(x) + x đạt cực tiểu tại điểm
A. x= 0
B.x= 1
C. x= 2
D. Không có điểm cực tiểu
Hàm số f(x) có đạo hàm f '(x) trên R. Hình vẽ bên là đồ thị của hàm số f '(x) trên R.
Hỏi hàm số y = f ( | x | ) + 2018 có bao nhiêu điểm cực trị?
A.5
B.3
C.2
D.4
Cho hàm số y = f(x) có đạo hàm trên R. Đồ thị hàm số y= f’(x) như hình vẽ bên dưới
Số điểm cực trị của hàm số y= g( x)= f( x- 2017) – 2018x+ 2019 là
A. 1
B. 2
C.3
D. 4
Hàm số y= f(x) có đạo hàm f’(x) trên khoảng . Hình vẽ bên là đồ thị của hàm số y=- f’( x) trên khoảng .
Hỏi hàm số y= f(x) có bao nhiêu điểm cực trị?
A . 0
B. 1
C. 3
D.4
Cho hàm số y= f( x) có đạo hàm liên tục trên R, hàm số y= f’ (x-2) có đồ thị hàm số như hình bên. Số điểm cực trị của hàm số y= f( x) là :
A. 0
B. 2
C. 1
D. 3
Cho hàm số y = f(x) , có đạo hàm là f'(x) liên tục trên ℝ và hàm số f'(x) có đồ thị như hình dưới đây.
Hỏi hàm số y = f(x) có bao nhiêu cực trị?
A. 1.
B. 0.
C. 3.
D. 2.
Cho hàm số y= f(x) có đạo hàm trên R và đồ thị hình bên dưới là đồ thị của đạo hàm f’(x) .
Hàm số nghịch biến trên khoảng
A (-3 ; -2)
B. (- 2 ; -1)
C. (- 1 ; 0)
D. (0 ; 2)
Cho hàm số y= f( x) có đạo hàm trên R. Đồ thị hàm số y= f’(x) như hình vẽ bên dưới. Hàm số g(x) = 2f(x) + x2 đạt cực tiểu tại điểm
A . x=-1
B. x= 0
C . x= 1
D.x= 2
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f '(x) như hình vẽ bên dưới. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
I. Hàm số có 3 điểm cực trị.
II. Hàm số g(x)đạt cực tiểu tại x=0
III. Hàm số g(x) đạt cực đại tại x=2
IV. Hàm số g(x) đồng biến trên khoảng (-2;0)
V. Hàm số g(x) nghịch biến trên khoảng (-1;1)
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A.1
B.4
C.3
D.2