Cho hàm số y = f ( x ) có đạo hàm f ' ( x ) = x ( x + 1 ) ( 1 - 2 x ) 3 , ∀ x ∈ ℝ . Số điểm cực trị của hàm số đã cho là
A. 3
B. 1
C. 5
D. 2
Bài 1: Xét tính đơn điệu của hàm số \(y=f(x)\) khi biết đạo hàm của hàm số là:
a) \(f'(x)=(x+1)(1-x^2)(2x-1)^3\)
b) \(f'(x)=(x+2)(x-3)^2(x-4)^3\)
Bài 2: Cho hàm số \(y=f(x)\) có đạo hàm \(f'(x)=x(x+1)(x-2)\). Xét tính biến thiên của hàm số:
a) \(y=f(2-3x)\)
b) \(y=f(x^2+1)\)
c) \(y=f(3x+1)\)
Cho hàm số y=f(x) có đạo hàm là f ' ( x ) = x ( x + 1 ) 2 ( x - 1 ) . Hàm số y=f(x) có bao nhiêu điểm cực trị?
Cho hàm số y = f ( x ) có đạo hàm f ' ( x ) = x 2 ( x - 1 ) ( x + 1 ) 3 với mọi x ∈ ℝ . Số điểm cực trị của hàm số y = f ( x ) là
A. 6
B. 4
C. 2
D. 3
Cho hàm số y = f ( x ) có đạo hàm f ' ( x ) = ( 3 - x ) ( x 2 - 1 ) + 2 x , ∀ x ∈ R . Hỏi hàm số y = f ' ( x ) - x 2 - 1 có bao nhiêu điểm cực tiểu
A. 2
B. 3
C. 4
D. 1
Cho hàm số y= f(x) . Biết f(x) có đạo hàm f’(x) và hàm số y= f’(x) có đồ thị như hình vẽ.
Hàm số g( x) = f(x- 1) đạt cực đại tại điểm nào dưới đây?
A. x= 2
B. x= 4
C . x= 3
D. x= 1
Chọn B
+ Dựa vào đồ thị hàm số ta thấy :
- Hàm số y= f( x) nghịch biến trên khoảng ( - ∞; 1) và ( 3; 5) .
- Hàm số y= f( x) nghịch biến trên khoảng ( 1 ; 3) và ( 5 ; + ∞)
Cho hàm số y = f(x) có đạo hàm f'(x)= ( e x + 1 ) ( e x - 12 ) ( x + 1 ) ( x - 1 ) 2 trên R. Hỏi hàm số y=f(x) có bao nhiêu điểm cực trị?
A. 1.
B. 2.
C. 3.
D. 4.
Cho hàm số y = f (x) có đạo hàm f ' ( x ) = x 2 ( x - 1 ) ( x 2 - 4 ) Số điểm cực trị của hàm số y = f(x) là:
A. 4
B. 1
C. 2
D. 3
Cho hàm số y=f(x) có đạo hàm f ' ( x ) = x 2 ( x 2 - 1 ) . Điểm cực tiểu của hàm số y=f(x) là:
A. x = 0.
B. x = -1.
C. y = 0.
D. x = 1
Cho hàm số y = f ( x ) có đạo hàm f ' ( x ) = x ( x - 1 ) 2 ( x - 2 ) . Tìm khoảng nghịch biến của đồ thị hàm số y = f ( x )
Cho hàm số y=f(x) có đạo hàm f ’ ( x ) = x ( x - 1 ) 2 ( x - 2 ) . Tìm khoảng nghịch biến của đồ thị hàm số y=f(x)
A. (∞;0) và (1;2)
B. (0;1)
C. (0;2)
D. (2;+∞)