Lập mệnh đề P ⇒ Q và xét tính đúng sai của nó, với P: “4 = 1”, Q: “3 = 0”
Lập mệnh đề P ⇒ Q và xét tính đúng sai của nó, với P: “2 < 3”, Q: “-4 < -6”
Xét hai mệnh đề sau:
(1) Nếu ABC là tam giác đều thì nó là tam giác cân
(2) Nếu 2a – 4 > 0 thì a > 2
a) Xét tính đúng sai của mỗi mệnh đề trên.
b) Mỗi mệnh đề trên đều có dạng “Nếu P thì Q”. Chỉ ra P và Q ứng với mỗi mệnh đề đó.
a)
(1) “Nếu ABC là tam giác đều thì nó là tam giác cân” là mệnh đề đúng.
(2) “Nếu 2a – 4 >0 thì a > 2” là mệnh đề đúng.
b) Trong mệnh đề (1) “Nếu ABC là tam giác đều thì nó là tam giác cân”
P: “ABC là tam giác đều”
Q: “ABC là tam giác cân”
Trong mệnh đề (2) “Nếu 2a – 4 > 0 thì a > 2”
P: “2a – 4 > 0”
Q: “a > 2”
Chú ý
Từ “nó” trong mênh đề (1) được hiểu là “ABC”. Do đó khi chỉ ra mệnh đề Q, ta dùng “ABC” thay cho “nó” để mệnh đề được rõ nghĩa.
Lập mệnh đề phủ định của các mệnh đề sau và xét tính đúng, sai của nó: ∃ x ∈ Q : x2 = 2
B: “∃ x ∈ Q : x2 = 2”.
B− : “∀ x ∈ Q : x2 ≠ 2”
B− đúng.
Lưu ý: √2 là số vô tỷ.
Xét hai mệnh đề dạng \(P \Rightarrow Q\) sau:
“Nếu ABC là tam giác đều thì nó có hai góc bằng \({60^o}\)”;
“Nếu \(a = 2\) thì \({a^2} - 4 = 0\)”.
a) Chỉ ra P, Q và xét tính đúng sai của mỗi mệnh đề trên.
b) Với mỗi mệnh đề đã cho, phát biểu mệnh đề \(Q \Rightarrow P\) và xét tính đúng sai của nó.
a)
+) Mệnh đề R: “Nếu ABC là tam giác đều thì nó có hai góc bằng \({60^o}\)” có dạng \(P \Rightarrow Q\), với
P: “ABC là tam giác đều” và Q: “Tam giác ABC có hai góc bằng \({60^o}\)”
Ta thấy khi P đúng thì Q cũng đúng. Do đó \(P \Rightarrow Q\) đúng hay R đúng.
+) Mệnh đề T: “Nếu \(a = 2\) thì \({a^2} - 4 = 0\)” có dạng \(P \Rightarrow Q\), với:
P: “\(a = 2\)” và Q: “\({a^2} - 4 = 0\)”.
Ta thấy khi P đúng thì Q cũng đúng. Do đó \(P \Rightarrow Q\) đúng hay T đúng.
b) Mệnh đề \(Q \Rightarrow P\) của hai mệnh đề trên là:
“Nếu ABC có hai góc bằng \({60^o}\) thì nó là tam giác đều”, đúng.
“Nếu \({a^2} - 4 = 0\) thì \(a = 2\)” sai (vì thiếu nghiệm \(a = - 2\)).
Dùng kí hiệu \(\forall\) và \(\exists\) để viết mệnh đề sau rồi lập mệnh đề phủ định và xét tính đúng sai của các mệnh đề đó :
a) Mọi số thực cộng với số đối của nó đều bằng 0
b) Mọi số thực khác 0 nhân với nghịch đảo của nó đều bằng 1
c) Có một số thực bằng số đối của nó
a) \(\forall x\in\mathbb{R}:x+\left(-x\right)=0\) (đúng)
Phủ định là \(\exists x\in\mathbb{R}:x+\left(-x\right)\ne0\) (sai)
b) \(\forall x\in\mathbb{R}\)\ \(\left\{0\right\}:x.\dfrac{1}{x}=1\) (đúng
Phủ định là \(\exists x\in\mathbb{R}\)\ \(\left\{0\right\}:x.\dfrac{1}{x}\ne1\) (sai)
c) \(\exists x\in R:x=-x\) (đúng)
Phủ định là \(\forall x\in\mathbb{R}:x\ne-x\) (sai)
Dùng kí hiệu ∀ và ∃ để viết mệnh đề sau rồi lập mệnh đề phủ định và xét tính đúng sai của mệnh đề đó.
Mọi số thực khác 0 nhân với nghịch đảo của nó đều bằng 1
∀ x ∈ R 0 : x . 1 / x = 1 (đúng)
Phủ định là ∃ x ∈ R 0 : x . 1 / x ≠ 1 (sai)
Phát biểu mệnh đề P => Q và phát biểu mệnh đề đảo, xét tính đúng sai của các mệnh đề đó với: P: ″2 > 9″ và Q: ″4 < 3″. Chọn đáp án đúng:
A. Mệnh đề P => Q là " Nếu 2 > 9 thì 4 < 3", mệnh đề này đúng vì mệnh đề P sai. Mệnh đề đảo là Q => P : " Nếu 4 < 3 thì 2 > 9", mệnh đề này đúng vì mệnh đề Q đúng.
B. Mệnh đề P => Q là " Nếu 2 > 9 thì 4 < 3", mệnh đề này sai vì mệnh đề P sai. Mệnh đề đảo là Q => P : " Nếu 4 < 3 thì 2 > 9", mệnh đề này đúng vì mệnh đề Q sai.
C. Mệnh đề P => Q là " Nếu 2 > 9 thì 4 < 3", mệnh đề này sai vì mệnh đề P sai. Mệnh đề đảo là Q => P : " Nếu 4 < 3 thì 2 > 9", mệnh đề này sai vì mệnh đề Q sai.
D. Mệnh đề P => Q là " Nếu 2 > 9 thì 4 < 3", mệnh đề này đúng vì mệnh đề P sai. Mệnh đề đảo là Q => P : " Nếu 4 < 3 thì 2 > 9", mệnh đề này đúng vì mệnh đề Q sai.
Dùng kí hiệu ∀ và ∃ để viết mệnh đề sau rồi lập mệnh đề phủ định và xét tính đúng sai của mệnh đề đó.
Mọi số thực cộng với số đối của nó đều bằng 0.
∀ x ∈ R : x + ( - x ) = 0 (đúng)
Phủ định là ∃ x ∈ R : x + ( - x ) ≠ 0 (sai)
Cho a là số tự hiên, xét các mệnh đề P : "a có tận cùng là 0", Q : "a chia hết cho 5"
a) Phát biểu mệnh đề \(P\Rightarrow Q\) và mệnh đề đảo của nó;
b) Xét tính đúng sai của cả hai mệnh đề trên
a) \(\left(P\Rightarrow Q\right):\) "Nếu a có tận cùng bằng 0 thì a chia hết cho 5".
Mệnh đề đảo \(\left(Q\Rightarrow P\right):\)"Nếu a chia hết cho 5 thì a có tận cùng bằng 0"
b) \(\left(P\Rightarrow Q\right):\) đúng. \(\left(Q\Rightarrow P\right):\) sai