Trong không gian với hệ toạ độ Oxyz, cho điểm A(2;3;4). Khoảng cách từ A đến trục toạ độ Ox bằng
A. 2.
B. 4.
C. 3.
D. 5.
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(2;-2;0),B(-2;4;-2). Toạ độ trung điểm của đoạn thẳng AB là
A. (0;2;-2).
B. (0;4;-4).
C. (0;1;-1).
D. (-4;6;-2).
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A (2;-3;2), B (3;5;4). Tìm toạ độ điểm M trên trục Oz sao cho MA²+MB² đạt giá trị nhỏ nhất.
A. M (0;0;49)
B. M (0;0;67)
C. M (0;0;3)
D. M (0;0;0).
Chọn C
Gọi I là trung điểm của
Ta có:
IA²+IB² không đổi nên MA²+MB² đạt giá trị nhỏ nhất khi MI đạt giá trị nhỏ nhất.
=> M là hình chiếu của I trên trục Oz.
=> M (0;0;3).
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A (2;-3;2), B (3;5;4). Tìm toạ độ điểm M trên trục Oz so cho MA²+MB² đạt giá trị nhỏ nhất.
A. M (0;0;49)
B. M (0;0;67)
C. M (0;0;3)
D. M (0;0;0)
Chọn C
IA²+IB² không đổi nên MA²+MB² đạt giá trị nhỏ nhất khi MI đạt giá trị nhỏ nhất.
Suy ra M là hình chiếu của I trên trục Oz.
Suy ra M (0;0;3).
Trong không gian với hệ toạ độ Oxyz, cho điểm A(2;2;1). Tính độ dài đoạn thẳng OA.
A. OA = 5
B. OA = 3
C. OA = 9
D. OA = 5
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A (2; -3; 2), B (3; 5; 4). Tìm toạ độ điểm M trên trục ?z sao cho MA2 + MB2 đạt giá trị nhỏ nhất.
A. M (0; 0; 49)
B. M (0; 0; 67)
C. M (0; 0 ;3)
D. M (0; 0; 0)
Chọn C
Gọi I là trung điểm của AB
Suy ra: MA2 + MB2 đạt giá trị nhỏ nhất khi MI đạt giá trị nhỏ nhất.
=>M là hình chiếu của I trên trục Oz => M (0 ; 0 ; 3)
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(2; -3; 2), B (3; 5; 4). Tìm toạ độ điểm M trên trục Oz sao cho M A 2 + M B 2 đạt giá trị nhỏ nhất.
A. M (0; 0; 49).
B. M (0; 0; 67)
C. M (0; 0 ;3)
D. M (0; 0; 0)
Trong không gian với hệ toạ độ Oxyz, cho điểm M(2;-3;1) và đường thẳng d : x + 1 2 = y - 2 - 1 = z 2 Tìm toạ độ điểm M 'đối xứng với M qua d
A. M’(3;-3;0)
B. M’(1;-3;2)
C. M’(0;-3;3)
D. M’(-1;-2;0)
Đáp án C.
Ta có phương trình mặt phẳng (P) đi qua M và vuông góc với d
Gọi I là giao điểm của đường thẳng d và (P) khi đó tạo độ I là nghiệm của hệ
M’ đối xứng với M qua d thì I là trung điểm của MM’ ⇒ M’(0;-3;3)
Trong không gian với hệ toạ độ Oxyz, cho điểm M(2;-3;1) và đường thẳng d : x + 1 2 = y - 2 - 1 = z 2 . Tìm toạ độ điểm M 'đối xứng với M qua d
A. M'(3; -3; 0)
B. M'(1; -3; 2)
C. M'(0; -3; 3)
D. M'(-1; -2; 0)
Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(3;-2;-2), B(3;2;0), C(0;2;1). Phương trình mặt phẳng (ABC) là:
A. 2x -3y +6z =0
B. 4y + 2z -3 =0
C. 3x + 2y +1 =0
D. 2y + z -3 =0
Đáp án A
(ABC) qua A(3; -2; -2) và có véc tơ pháp tuyến