Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(2;0;2),B(0;2;-2). Các điểm M, N lần lượt di động trên các đoạn thẳng OA, OB sao cho MN chia tam giác OAB thành hai phần có diện tích bằng nhau. Khi MN ngắn nhất thì toạ độ trọng tâm của tam giác OMN là
A. ( 2 4 ; 2 4 ; 0)
B. ( 2 3 ; 2 3 ; 0)
C. ( 1 3 ; 1 3 ; 0)
D. ( 1 4 ; 1 4 ; 0)
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(4;0;1),B(-2;2;3). Phương trình nào dưới đây là phương trình mặt phẳng trung trực của đoạn thẳng AB?
A. 3x+y+z-6=0.
B. 3x-y-z=0.
C. 6x-2y-2z-1=0.
D. 3x-y-z+1=0.
Trong không gian với hệ toạ độ Oxyz, phương trình mặt phẳng trung trực của đoạn thẳng nối hai điểm A(2;1;3),B(-2;1;-1) là
A. y+z-2=0.
B. x-z+1=0.
C. x+z+2=0.
D. x+z-1=0.
Trong không gian Oxyz, cho hai điểm A(1;−2;1), B(0;1;−3). Toạ độ véctơ A B ⇀ là
A. (1;-3;4)
B. (1;-1;2)
C. (-1;3;-4)
D. (-1;1;2)
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1;-2;0),B(-3;0;2) và mặt phẳng (P):x+y+z-5=0. Điểm M(a;b;c) trên (P) sao cho MA=MB= 3 2 . Tính ab+bc+ca.
A. 5
B. 1
C. 7
D. 3
Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(1;2;-2), B(3;-4;0), C(1;2;-1). Phương trình đường thẳng qua C và song song với AB là
A. x = 1 + t y = 2 - 3 t z = - 1 + t
B. x = 1 + 2 t y = 2 - t z = - 1 - t
C. x = 1 + t y = 2 - t z = - 1 + t
D. x = 1 + 2 t y = 2 - 3 t z = - 1 - t
Trong không gian với hệ toạ độ Oxyz, cho điểm A(9;-3; 5),B(a;b; c). Gọi M, N, P lần lượt là giao điểm của đường thẳng AB với các mặt phẳng toạ độ (Oxy),(Oxz)và(Oyz). Biết M, N, P nằm trên đoạn AB sao cho AM=MN=NP=PB. Giá trị của tổng a+b+c là
A. -21
B. -15
C. 15
D. 21
Trong không gian với hệ toạ độ Oxyz, cho ba đường thẳng d 1 : x 1 = y - 1 2 = z + 1 - 1 ; d 1 : x - 1 2 = y + 1 1 = z - 2 ; x = 3 y = 1 - 3 t z = 4 t .Đường thẳng d có véctơ chỉ phương u ⇀ = a ; b ; - 2 cắt d 1 , d 2 , d 3 lần lượt tại A, B, C sao cho B là trung điểm của đoạn thẳng AC. Tính T = a + b
A. T = 15
B. T = 8
C. T = - 7
D. T = 13
Trong không gian với hệ toạ độ Oxyz, cho ba đường thẳng d 1 : x 1 = y - 1 2 = z + 1 - 1 ; d 2 : x - 1 2 = y + 1 1 = z - 2 ; d 3 : x = 3 y = 1 - 3 t z = 4 t . Đường thẳng d có véctơ chỉ phương u → (a;b;-2) cắt d 1 , d 2 , d 3 lần lượt tại A, B, C sao cho B là trung điểm của đoạn thẳng AC. Tính T=a+b.
A. T = 15
B. T = 8
C. T = -7
D. T = 13