cho diem a nanm vuong goc xoy ke ab vuong goc ox ac vuong goc voi oy vi sao ab vuong goc ac
bai1:cho diem A nam trong goc nhon xOy ke AH vuong goc Ox,tren tia doi cua tia HA lay diem B sao cho HB=HA.Ke AK vuong goc Oy;tren tia doi cua tia KA lay diem C sao cho KC=KA.CMR:
a)OB=OC
b)biet goc xOy=alpha.Tinh goc BOC
c)goc xOy bang bao nhieu do thi O se la trung diem cua BC?
bai2:cho tam giac ABC co AC>AB,tia phan giac cua goc A cat BC o D.Tren AC lay diem E sao cho AE=AD.CMR:AD vuong goc AE
bai3:cho m la duong trung truc cua AB,C la diem thuoc M.Goi Cx la tia doi cua tia CA,Cy la tia phan giac cua goc BCx.CMR:Cy vuong goc voi m
Cho tam giac ABC vuong tai A(AB<AC). Goi I la trung diem AC.Qua I ke duong thang vuong goc voi BC. Qua C ke duong thang vuong goc voi AC. chung cat nhau tai diem E.CM AE vuong goc BI
Lay diem C € tia p/giac Oz cua goc xOy. Ke CA va CB lan luot voi vuong goc voi Ox va Oy (A€ Ox, B € Oy)
a, chung minh ∆AOC va ∆BOC
b, chung minh OC la duong trung truc cua dg thang AB
c, ke AD vuong goc voi OB( D€OB) goi M la giao diem cua AD voi Oz ,chung minh BM vuong goc voi OA
a, xét tam giác AOC và tam giác BOC có:
OC chung
\(\widehat{BOC}\)=\(\widehat{AOC}\)(GT)
\(\Rightarrow\)tam giác AOC = tam giác BOC( CH-GN)
b,gọi F là giao điểm của OC và AB
xét tam giác FOA và tam giác FOB có:
OA=OB( câu a)
\(\widehat{FOA}\)=\(\widehat{FOB}\)(GT)
OF cạnh chung
\(\Rightarrow\)tam giác FOA= tam giác FOB( c.g.c)
\(\Rightarrow\)\(\widehat{AFO}\) =\(\widehat{BFO}\)2 góc này ở vị trí kề bù nên \(\widehat{AFO}\)=\(\widehat{BFO}\)=90 độ\(\Rightarrow\)OC là đường trung trực của đg thẳng AB
cho goc xOy vuong tren Ox lay A tren Oy lay B sao cho OA=OB lay M la trung diem cua doan AB
a) OM la trung truc cua AB
b)Tu A ke duong thang vuong goc voiOx tu B ke duong thang vuong goc voi Oy chung cat nhau tai y.Cm oy la phan giac goc AOB
c)CM O,Y,M thang hang
CHO GOC NHON XOY TREN OY LAY DIOEM M TU M KE MN VUONG GOC VOI OX TAI N TU N KE NP VUONG GOC OY TAI P TU P KE PQ VUONG GOC TU Q KE OE VUONG GOC OY TRONG HINH VE CO BAO NHIEU CAP SONG SONG VI SAO BIET OQE = 40 DO TINH SO DO GOC NHON TRU XO
cho tam giac abc vuong tai A (AB<AC). Ke duong cao AH.
A) TAM GIAC AHB dong dang voi tam giac CAB
B) Tu H ke HE vuong goc voi AB(E THUOC AB). Ke HF vuong goc voi AC ( F thuoc AC) CM AE.AB=AF.AC
C) GOI M LA GIAO DIEM CUA EF VA BC. CM GOC MCE = GOC MFB
a: Xet ΔAHB vuôg tại H và ΔCAB vuông tại A có
góc B chung
=>ΔAHB đồng dạng với ΔCAB
b: Xét ΔAHB vuông tại H có HE là đường cao
nen AE*AB=AH^2
Xét ΔAHC vuông tạiH có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC
c: góc MEB=góc AEF=góc AHF=góc MCF
Xét ΔMEB và ΔMCF có
góc MEB=góc MCF
góc M chung
=>ΔMEB đồng dạng với ΔMCF
=>ME/MC=MB/MF
=>ME/MB=MC/MF
=>ΔMEC đồng dạng với ΔMBF
=>góc MCE=góc MFB
Cho goc nhon xOy. Diem H nam tren tia phan giac cua goc xOy. Tu H ke cac duong vuong goc xuong hai canh Ox va Oy tai A vaf B ( A thuoc Ox, B thuoc Oy )
a) CM: tam giac OAB can
b) Tu A ke AD vuong goc Oy ( D thuoc Oy ) , C la giao diem cua AD voi OH. CM: BC vuong goc Ox
c) Khi goc xOy = 60° , CM: OA = OD
Ta có hình vẽ:
a/ Xét hai tam giác vuông OAH và OBH có:
góc AOH = góc BOH (Gt)
OH: cạnh chung
=> tam giác OAH = tam giác OBH
=> OA = OB (hai cạnh tương ứng)
Vậy tam giác OAB cân tại O
b/ Ta có: OA = OB (cmt)
Ta lại có: AH = BH (t/g OAH = t/g BOH)
=> OH là trung trực của AB
=> OH vuông góc vs AB
hay OH là đường cao của tam giác OAB
Ta có: AD vuông góc với OB
hay AD là đường cao của tam giác OAB
Mà AD cắt OH tại C
=> C là trực tâm của tam giác
=> BC vuông góc vs OA
hay BC vuông góc vs Ox
cho tam giac ABC can tai A ke BH vuong goc voi AC goi D la mot diem thuoc canh day BC ke DE vuong goc voi AC, DF vuong goc voi AB chung minh rang DE+DF=BH
cho tam giác abc vuông tại A. m la trung diem ac . ke mh vuong goc voi bc tai h . tu c ke duong thang vuong goc ac . chung minh ad vuong goc voi bm (ab<ac)