Cho hình chóp SABCD có đáy ABCD là hình chữ nhật với và A B = α 2 ; B C = α và S A = S B = S C = S D = 2 α . Gọi K là hình chiếu vuông góc của B trên AC, H là hình chiếu vuông góc của K trên SA. Tính cosin góc giữa đường thẳng SB và mặt phẳng (BKH).
Hình chóp S.ABCD có đáy ABCD là hình chữ nhật với A B = 3 c m , B C = 4 c m , S C = 5 c m . Tam giác SAC nhọn và nằm trong mặt phẳng vuông góc với (ABCD). Các mặt (SAB) và (SAC)tạo với nhau một góc α sao cho α = 3 29 . Tính thể tích khối chóp SABCD.
A.16 c m 2 .
B. 15 29 c m 2 .
C.20 c m 2 .
D. 18 5 c m 2 .
Đáp án A
Gọi chiều cao của hình chóp là h ⇒ h < S C = 5 c m
Cho hình chóp SABCD có đáy ABCD là hình vuông cạnh α , tam giác SAD đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Thể tích của khối chóp SABCD bằng
Cho hình chóp S. ABCD có đáy là ABCD là hình chữ nhật có AB = a, BC= 2a. Hai mp (SAB)và mp (SAD) cùng vuông góc với mặt phẳng đáy, cạnh SC hợp với mặt đáy một góc α . Tính thể tích khối chóp S. ABCD theo α
A. 2 a 3 15 3
B. 2 a 3 15
C. 2 a 3
D. 2 a 3 15 9
Cho hình chóp SABCD có đáy ABCD là hình chữ nhật, AB=a. Cạnh bên SA vuông góc với đáy và SA=a. Góc giữa đường thẳng SB và CD là:
A. 90 o
B. 60 o
C. 30 o
D. 45 o
Chọn D.
Ta có AB//CD
⇒ S B ; C D ^ = S B ; A B ^ = S B A ^ = 45 o d o ∆ S B A c â n
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB=a, AD=2a; SA vuông góc với đáy ABCD, SC hợp với đáy một góc α và tan α . Khi đó, khoảng cách từ điểm B đến mặt phẳng (SCD) là:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, A B = a , B C = a 3 , S A = a và SA vuông góc với đáy ABCD. Tính sin α , với α là góc tạo bởi giữa đường thẳng BD và mặt phẳng S B C .
A. sin α = 7 8
B. sin α = 3 2
C. sin α = 2 4
D. sin α = 3 5
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a , BC = a 3 , SA = a và SA vuông góc với đáy ABCD. Tính sin α với α là góc tạo bởi giữa đường thẳng BD và mặt phẳng
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, A B = a , B C = a 3 , S A = a và SA vuông góc với đáy ABCD. Tính sin α với α là góc tạo bởi đường thẳng BD và mặt phẳng (SBC)
cho hình chóp sabcd có đáy abcd là hình chữ nhật,ab=a,ad=2a,sa vuông góc với mặt phẳng đáy,góc giữa sb và đáy bằng 45 độ,độ dài cạnh sd là
Lời giải:
Do $SA\perp (ABCD)$ nên $\angle (SB, ABCD)=\angle (SB, AB)=\widehat{SBA}=45^0$
$\Rightarrow SAB$ là tam giác vuông cân tại $A$
$\Rightarrow SA=AB=a$
Áp dụng định lý Pitago: $SD=\sqrt{SA^2+AD^2}=\sqrt{a^2+(2a)^2}=\sqrt{5}a$