Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB = 2a, AD = a. Hình chiếu của S lên mặt phẳng (ABCD) là trung điểm H của AB. Góc giữa SC với mặt phẳng đáy bằng 45°. Khoảng cách từ điểm A đến mặt phẳng (SCD) là:
A. a 3 3
B. a 6 4
C. a 6 3
D. a 3 6
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A, B và AD = 2a, AB = BC = SA = a. Cạnh bên SA vuông góc với đáy, với M là trung điểm AD. Tính khoảng cách h từ M đến mặt phẳng (SCD).
A. h = a 3
B. h = a 6 6
C. h = a 6 3
D. h = a 3 6
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, A D = 2 a , cạnh bên SA vuông góc với đáy và SA = 2a. Gọi M, N lần lượt là trung điểm của cạnh SA, CD và α là góc giữa đường thẳng MN và mặt phẳng (SBD). Khi đó sin α bằng
: Cho hình chóp sabcd có đáy ABCD là hình chữ nhật, ab=a, bc=a căn 3, sa vuông góc với (abcd) Góc giữa SC và mặt đáy bằng 45. Khoảng cách từ điểm A đến mặt phẳng (scd) bằng
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt phẳng (SAB) vuông góc với đáy (ABCD). Gọi H là trung điểm của AB, SH = HC,SA = AB. Gọi α là góc giữa đường thẳng SC và mặt phẳng (ABCD). Giá trị chính xác của tan α là?
A. 1 2
B. 2 3
C. 1 3
D. 2
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=a, AD=2a, SA=2a và SA ⊥ (ABCD), Gọi a là góc giữa 2 đường thẳng SC và BD. Khi đó, cos α bằng
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 3a, AD = 2a. Hình chiếu vuông góc của S lên mặt phẳng (ABCD) là điểm H thuộc cạnh AB sao cho AH=2HB. Góc giữa mặt phẳng (SCD) và mặt phẳng (ABCD) bằng 60°. Khoảng cách từ A đến mặt phẳng (SBC) là:
A. 2 a 39 13
B. 3 a 39 13
C. a 39 13
D. 6 a 39 13
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với A D = 2 a ; S A ⊥ A B C D và SA = a. Khoảng cách từ A đến mặt phẳng (SCD) bằng
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có cạnh AB=a, BC=2a. Cạnh SA vuông góc với mặt phẳng đáy (ABCD), SA=2a. Khoảng cách giữa hai đường thẳng BD và SC bằng