Chọn đáp án C
HC là hình chiếu của SC lên mặt phẳng (ABCD).
Góc giữa SC với mặt phẳng (ABCD) là: S C H ^ = 45 °
Kẻ
Kẻ
Ta có:
Tam giác SHC vuông cân tại H vì
Mặt khác: HI = AD = a
Xét tam giác SHI vuông tại H:
Chọn đáp án C
HC là hình chiếu của SC lên mặt phẳng (ABCD).
Góc giữa SC với mặt phẳng (ABCD) là: S C H ^ = 45 °
Kẻ
Kẻ
Ta có:
Tam giác SHC vuông cân tại H vì
Mặt khác: HI = AD = a
Xét tam giác SHI vuông tại H:
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = 3a, AD = 2a. Hình chiếu vuông góc của S lên mặt phẳng (ABCD) là điểm H thuộc cạnh AB sao cho AH=2HB. Góc giữa mặt phẳng (SCD) và mặt phẳng (ABCD) bằng 60°. Khoảng cách từ A đến mặt phẳng (SBC) là:
A. 2 a 39 13
B. 3 a 39 13
C. a 39 13
D. 6 a 39 13
Cho hình chóp S.ABCD có đáy hình chữ nhật, AB=a; AD=2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45 0 . Gọi M là trung điểm của SD. Tính theo a khoảng cách d từ điểm M đến mặt phẳng (SAC)
: Cho hình chóp sabcd có đáy ABCD là hình chữ nhật, ab=a, bc=a căn 3, sa vuông góc với (abcd) Góc giữa SC và mặt đáy bằng 45. Khoảng cách từ điểm A đến mặt phẳng (scd) bằng
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật AB=a, AD=2a; SA vuông góc với đáy ABCD, SC hợp với đáy một góc α và tan α . Khi đó, khoảng cách từ điểm B đến mặt phẳng (SCD) là:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh A. Hình chiếu vuông góc của S lên mặt phẳng (ABCD) là điểm I thuộc đoạn AB sao cho BI=2AI. Góc giữa mặt bên (SCD) và mặt đáy (ABCD) bằng 60 ° . Tính khoảng cách giữa hai đường thẳng AD và SC.
A. 93 31 a
B. 3 93 31 a
C. 93 31 a
D. 3 93 31 a
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt bên SAD là tam giác vuông tại S, hình chiếu của S lên mặt phẳng là điểm H thuộc cạnh AD sao cho AH = 3HD. Gọi M là trung điểm của AB, biết SA = 2a 3 và đường thẳng SC tạo với đáy một góc 30°. Khoảng cách từ điểm M đến mặt phẳng (SBC) là:
A. 2 a 66 11
B. a 66 22
C. a 66 66
D. a 66 11
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên SC=a 15 . Tam giác SAD là tam giác đều cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm AD, khoảng cách từ B đến mặt phẳng (SHC) bằng 2a 6 . Tính thể tích V của khối chóp S.ABCD?
Cho hình chóp S . A B C D có đáy ABCD là hình vuông tâm O cạnh 2a . Hình chiếu của S trên mặt đáy là trung điểm H của OA ; góc giữa hai mặt phẳng (SCD) và ( ABCD) bằng 450 . Tính khoảng cách giữa hai đường thẳng AB và SC
A. a 2
B. 3 a 2 2
C. 3 a 2 4
D. a 6
Cho hình chóp S . A B C D có đáy là hình vuông tại A và D, S A ⊥ A B C D . Góc giữa SB và mặt phẳng đáy bằng 45 o . E là trung điểm của SD, A B = 2 a , A D = D C = a . Tính khoảng cách từ điểm B đến mặt phẳng A C E
A. 2 a 3
B. 4 a 3
C. a
D. 3 a 4