Cho 2 phân số bằng nhau a/b và c/d.Chứng minh rằng
a, a+b/b = c+d/d
b, a-b/b = c-d/d
cho tỉ lệ thức a/b=c/d.Chứng minh rằnga/a-b=c/c-d
Ta có:a/b=c/d
<=>1 - a/b=1 - c/d
<=>a/a - a/b=c/c - c/d
<=>a/a-b=c/c-d (đpcm)
Cho 4 số dương a,b,c,d sao cho b=a+c/2 và c=2bd/b+d.Chứng minh: a/b=c/d
Cho hai số hữu tỉ a/b và c/d (a,b,c,d thuộc z; b>0, d>0), trong đó a/b<c/d. Chứng minh rằng
a)a/d < b/c
b)a/b<a+c/b+d<c/d
Cho hai số hữu tỉ a/b và c/d (a,b,c,d thuộc z; b>0, d>0), trong đó a/b<c/d. Chứng minh rằng
a)a/d < b/c
b)a/b<a+c/b+d<c/d
Bài 1 ; Tìm 3 phân số có mẫu khác nhau , các phân số này lớn hơn \(\frac{1}{4}\)và nhỏ hơn \(\frac{1}{3}\)
Bài 2 : Cho các số a,b ,c,d.Chứng minh rằng :
\(1< \frac{a}{a+c+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< 2\)
Bài 1 :
Từ \(\frac{1}{4}< \frac{1}{3}\) suy ra \(\frac{1}{4}< \frac{1+1}{4+3}< \frac{1}{3}\) hay \(\frac{1}{4}< \frac{2}{7}< \frac{1}{3}\)
Từ \(\frac{1}{4}< \frac{2}{7}\)suy ra \(\frac{1}{4}< \frac{1+2}{4+7}< \frac{1}{3}\)hay \(\frac{1}{4}< \frac{3}{11}< \frac{1}{3}\)
Từ \(\frac{2}{7}< \frac{1}{3}\)suy ra \(\frac{2}{7}< \frac{2+1}{7+3}< \frac{1}{3}\)hay \(\frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)
Vậy ta có : \(\frac{1}{4}< \frac{3}{11}< \frac{2}{7}< \frac{3}{10}< \frac{1}{3}\)
Chúc bạn học tốt ( -_- )
Bài 2 :
\(\frac{a}{a+b+c+d}< \frac{a}{a+b+c}< \frac{a}{a+c}\left(1\right)\)
\(\frac{b}{a+b+c+d}< \frac{b}{b+c+d}< \frac{b}{b+d}\left(2\right)\)
\(\frac{c}{a+b+c+d}< \frac{c}{c+d+a}< \frac{c}{c+a}\left(3\right)\)
\(\frac{d}{a+b+c+d}< \frac{d}{d+a+b}< \frac{d}{d+b}\left(4\right)\)
Cộng ( 1 ), ( 2 ) , (3 ) và ( 4 ) theo từng vế ta được :
\(1=\frac{a+b+c+d}{a+b+c+d}< \frac{a}{a+b+c}+\frac{b}{b+c+d}\)\(+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+c}{a+c}+\frac{b+d}{b+d}\)
Chúc bạn học tốt ( -_- )
Cho phân số a/b=c/d.Chứng minh rằng a/b=c/d=a+c/b+d=a-c/b-d.
Giúp mình nha , mình đang cần gấp .
Áp dụng tính chất dãy ti số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
=> đpcm
Cho a, b, c, d là các số tự nhiên, a < b, c < d. Chứng minh rằng
a + c < b + d
Cho a,b,c,d là các số dương thỏa mãn a^2 + b^2=1 và a^4/c+b^4/d=1/c+d.Chứng minh rằng:a^2/c+d/b^2>=2
\(\text{cho a,b,c,d thuộc z thỏa mãn a+b=c+d.chứng minh rằng a^2+b^2+c^2+d^2 l}\)cho a,b,c,d thuộc z thỏa mãn a+b=c+d.chứng minh rằng a^2+b^2+c^2+d^2