Tìm n sao cho biểu thức A=3n+1/2n+3 là số nguyên
tìm số nguyên n sao cho biểu thức sau là số nguyên 2n+3/16-3n
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63
tìm các giá trị nguyên của n để giá trị của biểu thức \(A=\dfrac{2n^2+3n+3}{2n-1}\) có giá trị là số nguyên
Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{1;0;3;-2\right\}\)
`2n^2+3n+3 | 2n-1`
`-` `2n^2-n` `n+2`
------------------
`4n+3`
`-` `4n-2`
------------
`5`
`<=> (2n^2+3n+3) : (2n-1)=5`
`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)
`+, 2n-1=1=>2n=2=>n=1`
`+, 2n-1=-1=>2n=0=>n=0`
`+, 2n-1=5=>2n=6=>n=3`
`+,2n-1=-5=>2n=-4=>n=-2`
vậy \(n\in\left\{1;0;3;-2\right\}\)
A=3n-1/2n-1 (n thuộc Z). Tìm n để biểu thức A là số nguyên
ta có A thuộc Z nên
\(2A=\frac{6n-2}{2n-1}=\frac{3\left(2n-1\right)+1}{2n-1}=3+\frac{1}{2n-1}\) nguyên khi 2n-1 là ước của 1
hay ta có : \(\orbr{\begin{cases}2n-1=-1\\2n-1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}2n-1=-1\\2n-1=1\end{cases}}\text{ hay }\orbr{\begin{cases}n=0\\n=1\end{cases}}\)
\(A=\dfrac{6n-2}{2n-1}=\dfrac{3\left(2n-1\right)+1}{2n-1}=3+\dfrac{1}{2n-1}\)
\(\Rightarrow2n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
2n-1 | 1 | -1 |
n | 1 | loại |
Cho biểu thức A=2n+1/n-3 + 3n-5/n-3 -4n-5/n-3
a) Tìm n để A nhận giá trị nguyên
b) Tìm n để A là phân số tối giản
/ là phần
CHo biểu thức A=2n+1/n-3 + 3n-5/n-33 - 4n-5/n-3 tìm giá trị của n để
a , A là giá trị nguyên
b , A là phân số
Cho biểu thức A= \(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\)
a, Rút gon A
b. Tìm số nguyên n để Á nhận giá trị là số nguyên.
a) \(A=\frac{2n+1+3n-5-4n+5}{n-3}=\frac{n+1}{n-3}\)
b) \(A=\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)
Để A đạt giá trị nguyên thì \(\frac{4}{n-3}\)đạt giá trị nguyên <=> \(n-3\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Tới đây lập bảng tìm n.
cho biểu thức A=(2n+1)/(n-3) + (3n-5) /(n-3) - (4n-5) / (n-3)
a)Rút gọn A
b)tìm số tự nhiên n để A nhận giá trị là số nguyên
c)tìm số nguyên n để phân số A sau khi rút gọn là phân số tối giản