Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc 60 ° . Tính theo a thể tích khối chóp S.ABCD
A. V = a 3 6 6
B. V = a 3 6 2
C. V = a 3 6 3
D. V = a 3 3
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc 60 ° . Tính theo a thể tích khối chóp S.ABCD
A. V = a 3 6 6
B. V = a 3 6 2
C. V = a 3 6 3
D. V = a 3 3
Cho hình chóp tứ giác đều S.ABCD có độ dài cạnh đáy bằng a, cạnh bên bằng \(\frac{a\sqrt{5}}{2}\). Tính góc tạo bởi mặt bên và mặt đáy, tính thể tích khối cầu ngoại tiếp hình chóp S.ABCD ?
Gọi H là tâm của ABCD\(\Rightarrow SH\perp\left(ABCD\right)\)
M là trung điểm của BC \(\Rightarrow BC\perp\left(SHM\right)\)
Do các mặt bên tạo với đáy cùng 1 góc => \(\widehat{SHM}\) bằng góc tạo bởi 2 mặt bên với đáy
Tính được \(SH=\frac{a\sqrt{3}}{2}'HM=\frac{a}{2}\)
\(\tan\widehat{SMH}=\frac{SH}{MH}=\sqrt{3}\Rightarrow\widehat{SMN}=60^0\)
Lập luận được tâm khối cầu là điểm I của SH với trung trực SC trong (SHC)
Tính được bán kính khối cầu do tam giác SNI đồng dạng với tam giác SHC
\(\Rightarrow SI=\frac{SN.SC}{SH}=\frac{5a}{4\sqrt{3}}\)
Vậy \(V=\frac{4}{3}\pi R^2=\frac{125a^3\sqrt{3}\pi}{432}\)
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, tất cả các cạnh bên tạo với mặt phẳng đáy một góc 60 ° . Thể tích của khối chóp S.ABCDlà:
A. a 3 6 3
B. a 3 3 2
C. a 3 3
D. a 3 3 6
Đáp án D
Gọi O là tâm của hình vuông A B C D ⇒ S O ⊥ A B C D
vÌ S O ⊥ A B C D suy ra S A ; A B C D ^ = S A ; O A = S A O ^ ^ = 60 0
Tam giác S A O vuông tại O, Có tan S A O ^ = S O O A ⇒ S O = tan 60 0 . a 2 2 = a 6 2
Vậy thể tích khối chóp là V = 1 3 . S O . S A B C D = 1 3 . a 6 2 . a 2 = a 3 6 6
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a cạnh bên hợp với mặt đáy một góc 600. Tính theo a thể tích khối chóp S.ABCD.
A. V = 6 a 3 6
B. V = 6 a 3 2
C. V = 6 a 3 3
D. V = a 3 3
Chọn A.
Gọi H là tâm của hình vuông ABCD thì SH ⊥ (ABCD)
Do đó
Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh AB = a (a>0) Góc giữa mặt bên và mặt đáy bằng 60 ° Tính thể tích khối chóp S.ABCD:
A. a 3 3 2
B. a 3 6
C. a 3 3 3
D. a 3 3 6
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với đáy một góc 30 ° .Thể tích V của khối chóp S.ABCD bằng
A. V = a 3 6 9 .
B. V = a 3 6 18 .
C. V = a 3 3 9 .
D. V = a 3 3 6 .
Đáp án B.
Chiều cao khối chóp:
h = a 2 2 . tan 30 ° = a 6 6 .
Do đó
V = 1 3 a 2 . h = 1 3 a 2 . a 6 6 = 6 a 3 18 .
Cho hình chóp tứ giác đều S.ABCd có cạnh đáy bằng a. Góc giữa mặt bên và mặt đáy bằng 60 ∘ . Tính thể tích V của khối chóp đã cho
A. V = a 3 6 6
B. V = a 3 3 6
C. V = a 3 3 2
D. V = a 3 3 18
Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc 60 ° Tính thể tích của khối cầu tiếp hình chóp S.ABC
Cho hình chóp S.ABC có đáy là tam giác đều cạnh a, cạnh bên SA vuông góc với đáy. Biết đường thẳng SC hợp với mặt phẳng đáy một góc 60 ° . Thể tích của khối chóp S.ABC bằng
A. a 3 4
B. a 3 2
C. a 3 8
D. 3 a 3 4
cho hình chóp tứ giác đều S ABCD có đáy ABCD là hình vuông cạnh a các mặt bên tạo với mặt đáy một góc bằng 60. tính thể tích khối chóp SABCD