Cho hai điểm A, B phân biệt. Tập hợp tâm những mặt cầu đi qua hai điểm A và B là
A. Mặt phẳng song song với đường thẳng AB
B. Trung điểm của đoạn thẳng AB
C. Đường thẳng trung trực của đoạn thẳng AB
D. Mặt phẳng trung trực của đoạn thẳng AB
Cho hai điểm A, B phân biệt. Tập hợp tâm những mặt cầu đi qua A và B là
A. Mặt phẳng trung trực của đoạn thẳng AB
B. Đường trung trực của AB
C. Mặt phẳng song song với đường thẳng AB
D. Trung điểm của đoạn AB
Chọn A.
Gọi I là tâm mặt cầu đi qua hai điểm A, B cố định và phân biệt thì ta luôn có IA = IB. Do đó I thuộc mặt phẳng trung trực của đoạn AB.
Tìm câu đúng trong các câu sau:
a, Có duy nhất một đường thẳng song song với 1 đường thẳng cho trước
b, Cho điểm M nằm ngoài đường thẳng thẳng a, đường thẳng đi qua M và song song với a là duy nhất
c, Qua điểm M nằm ngoài đường thẳng xy có 2 đường thẳng a và b cùng song song với xy thì a trùng với b
d, Hai đường thẳng song song là hai đường thẳng ko có điểm chung
e, hai đường thẳng song song là hai đường thẳng phân biệt ko cắt nhau
g, Nếu đường thẳng c cắt hai đường thẳng a và b mà trong các góc tạo thành có một cặp góc đồng vị bù nhau thì a song song với b
h, Nếu đường thẳng c cắt hai đường thẳng a và b mà trong các góc tạo thành có một cặp góc so le trong phụ nhau thì a song song với b
i, Nếu đường thẳng a và b mà trong các góc tạo thành có một cặp góc trong cùng phía bằng nhau thì a song song với b
k, Đường thẳng đi qua trung điểm của đoạn thẳng AB là trung trực của AB
m, Đường thẳng ⊥ với đoạn thẳng AB là trung trực của AB
n, Đường thẳng đi qua trung điểm của đoạn thẳng AB và ⊥ với AB là trung trực của AB
p, Tập hợp các điểm cách đều hai đầu của đoạn thẳng AB là trung trực của đoạn thẳng AB
q, Hai góc đối đỉnh thì bằng nhau
r, Hai góc bằng nhau thì đối đỉnh
Chọn khăng định sai A. Hai điểm M và N đối xứng với nhau qua đường thẳng AB thì MN là đường trung trực của đoạn thẳng AB B. Đường thẳng đi qua trung điểm của một cạnh bên của hình thang và song song với hai đáy là đường trung bình của hình thang đó. C. E đổi xứng F qua O khi O là trung điểm EF D. Đường thẳng đi qua trung điểm hai cạnh của tam giác thì song song với cạnh còn lại.
Trong không gian Oxyz, cho mặt phẳng (P):2x-y+2z+3=0 và hai đường thẳng d 1 : x 3 = y - 1 - 1 = z + 1 1 ; d 2 : x - 2 1 = y - 1 - 2 = z + 3 1 Xét các điểm A, B lần lượt di động trên d1 và d2 sao cho AB song song với mặt phẳng (P). Tập hợp trung điểm của đoạn thẳng AB là
A. Một đường thẳng có véctơ chỉ phương u → - 9 ; 8 ; - 5
B. Một đường thẳng có véctơ chỉ phương u → - 5 ; 9 ; 8
C. Một đường thẳng có véctơ chỉ phương u → 1 ; - 2 ; - 5
D. Một đường thẳng có véctơ chỉ phương u → 1 ; 5 ; - 2
Cho đoạn thẳng AB . Vẽ hai tia Ax và By thuộc hai nửa mặt phẳng đối nhau có bờ là đường thẳng AB sao cho Ax \(⊥\)AB , By \(⊥\)AB. Đường thẳng qua trung điểm M của đoạn thẳng AB lần lượt cắt Ax, By tại C và D. Chứng minh:
a. M là trung điểm của CD
b. AD = BC ; AD song song với BC
Cho tam giác nhọn ABC có trực tâm H và nội tiếp đường tròn (T). Gọi I là giao điểm của đường trung trực đoạn AH và phân giác trong của góc BAC; đường tròn tâm I bán kính IA cắt cạnh AB tại điểm D, cắt cạnh AC tại điểm E. Đường thẳng đi qua B, song song với DE, cắt (T) tại điểm P khác B, song song với DE, cắt (T) tại điểm Q khác C. Gọi L là giao điểm thứ 2 của CH với (T). CMR:
a) AB là đường trung trực của đoạn thẳng LH
b) Hai tam giác ADE và APQ cân
c) ba điểm L, D, P thẳng hàng
Bài tập 6. Trong mặt phẳng Oxy, cho hai đường thẳng Delta_{1} / 2 * x - y - 2 = 0 , Delta_{2} / x - y + 3 = 0 và hai điểm A(-1;3) , B(0;2) . a. Viết phương trình đường thẳng qua AB. b. Viết phương trình đường thẳng trung trực của đoạn thẳng AB . c. Viết phương trình đường thẳng qua 4 và song song với Delta_{1} . d. Viết phương trình đường thẳng qua 4 và vuông góc với Delta_{1} e. Viết phương trình đường thẳng qua B và có hệ số góc k = - 3 . f. Tính côsin góc giữa hai đường thẳng Delta_{1}, Delta_{2} g. Tính d(A, Delta_{2}) . h. Viết phương trình đường thẳng qua 4 và tạo với Delta_{1} một góc c biết cos varphi = 1/(sqrt(5)) i. Tìm tọa độ hình chiếu vuông góc của 4 trên Delta_{2} j. Tìm tọa độ điểm B^ prime d hat oi xứng với B qua Delta_{2}
Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD
a) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)
b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)
c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)
d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)
Câu 2:
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Trong mặt phẳng đáy vẽ đường thẳng d đi qua A và không song song với các cạnh của hình bình hành, d cắt đoạn BC tại E. Gọi C' là một điểm nằm trên cạnh SC
a) Tìm giao điểm M của CD và mặt phẳng (C'AE)
b) Tìm thiết diện của hình chóp cắt bởi mặt phẳng (C'AE)
Câu 3:
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD trên cạnh AD lấy điểm P không trùng với trung điểm của AD
a) Gọi E là giao điểm của đường thẳng MP và đường thẳng BD. Tìm giao tuyến của hai mặt phẳng (PMN) và (BCD)
b) Tìm giao điểm của mặt phẳng (PMN) và BC
Câu 4:
Cho bốn điểm A, B, C và D không đồng phẳng. Gọi I,K lần lượt là trung điểm của hai đoạn thẳng AD và BC
a) Tìm giao tuyến của hai mặt phẳng (IBC) và (KAD)
b) Gọi M và N là hai điểm lần lượt lấy trên hai đoạn thẳng AB và AC. Tìm giao tuyến của hai mặt phẳng (IBC) và (DMN)
Câu 5:
Cho tứ giác ABCD nằm trong mặt phẳng (α) có hai cạnh AB và CD không song song. Gọi S là điểm nằm ngoài mặt phẳng (α) và M là trung điểm đoạn SC.
a) Tìm giao điểm N của đường thẳng SD và mặt phẳng (MAB)
b) Gọi O là giao điểm của AC và BD. Chứng minh rằng ba đường thẳng SO, AM, BN đồng quy
10 giây suy nghĩ cấm tìm trên mạng
hồi sáng tớ đố bài này rùi dễ có trên mạng mà cấm tìm đó
Một câu hỏi quá dài , quá nhiều lại quá khó hiểu . Bạn chia thành từng bài đi cho giảm mệt!
Mặc dù chưa tìm đc cách giải nhưng mk thấy vui vì bn là người đam mê học toán, học toán hết mk và trung thực. Bn sẽ thành công. Chúc bn học giỏi.
Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD
a) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)
b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)
c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)
d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)
Câu 2:
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Trong mặt phẳng đáy vẽ đường thẳng d đi qua A và không song song với các cạnh của hình bình hành, d cắt đoạn BC tại E. Gọi C' là một điểm nằm trên cạnh SC
a) Tìm giao điểm M của CD và mặt phẳng (C'AE)
b) Tìm thiết diện của hình chóp cắt bởi mặt phẳng (C'AE)
Câu 3:
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD trên cạnh AD lấy điểm P không trùng với trung điểm của AD
a) Gọi E là giao điểm của đường thẳng MP và đường thẳng BD. Tìm giao tuyến của hai mặt phẳng (PMN) và (BCD)
b) Tìm giao điểm của mặt phẳng (PMN) và BC
Câu 4:
Cho bốn điểm A, B, C và D không đồng phẳng. Gọi I,K lần lượt là trung điểm của hai đoạn thẳng AD và BC
a) Tìm giao tuyến của hai mặt phẳng (IBC) và (KAD)
b) Gọi M và N là hai điểm lần lượt lấy trên hai đoạn thẳng AB và AC. Tìm giao tuyến của hai mặt phẳng (IBC) và (DMN)
Câu 5:
Cho tứ giác ABCD nằm trong mặt phẳng (α) có hai cạnh AB và CD không song song. Gọi S là điểm nằm ngoài mặt phẳng (α) và M là trung điểm đoạn SC.
a) Tìm giao điểm N của đường thẳng SD và mặt phẳng (MAB)
b) Gọi O là giao điểm của AC và BD. Chứng minh rằng ba đường thẳng SO, AM, BN đồng quy
10 giây suy nghĩ cấm tìm trên mạng
cái này là toán lớp 1 là tớ chết liền
và sao dài vậy bạn
vừa lười + khó = ko làm
Câu 1:Cho hình chóp S. ABCD có AB và CD không song song. Gọi M là một điểm thuộc miền trong của tam giác SCD
a) Tìm giao điểm N của đường thẳng CD và mặt phẳng (SBM)
b) Tìm giao tuyến của hai mặt phẳng (SBM) và (SAC)
c) Tìm giao điểm I của đường thẳng BM và mặt phẳng (SAC)
d) Tìm giao điểm P của SC và mặt pẳng (ABM), từ đó suy ra giao tuyến của hai mặt phẳng (SCD) và (ABM)
Câu 2:
Cho hình chóp S.ABCD có đáy là hình bình hành ABCD. Trong mặt phẳng đáy vẽ đường thẳng d đi qua A và không song song với các cạnh của hình bình hành, d cắt đoạn BC tại E. Gọi C' là một điểm nằm trên cạnh SC
a) Tìm giao điểm M của CD và mặt phẳng (C'AE)
b) Tìm thiết diện của hình chóp cắt bởi mặt phẳng (C'AE)
Câu 3:
Cho tứ diện ABCD. Gọi M và N lần lượt là trung điểm của các cạnh AB và CD trên cạnh AD lấy điểm P không trùng với trung điểm của AD
a) Gọi E là giao điểm của đường thẳng MP và đường thẳng BD. Tìm giao tuyến của hai mặt phẳng (PMN) và (BCD)
b) Tìm giao điểm của mặt phẳng (PMN) và BC
Câu 4:
Cho bốn điểm A, B, C và D không đồng phẳng. Gọi I,K lần lượt là trung điểm của hai đoạn thẳng AD và BC
a) Tìm giao tuyến của hai mặt phẳng (IBC) và (KAD)
b) Gọi M và N là hai điểm lần lượt lấy trên hai đoạn thẳng AB và AC. Tìm giao tuyến của hai mặt phẳng (IBC) và (DMN)
Câu 5:
Cho tứ giác ABCD nằm trong mặt phẳng (α) có hai cạnh AB và CD không song song. Gọi S là điểm nằm ngoài mặt phẳng (α) và M là trung điểm đoạn SC.
a) Tìm giao điểm N của đường thẳng SD và mặt phẳng (MAB)
b) Gọi O là giao điểm của AC và BD. Chứng minh rằng ba đường thẳng SO, AM, BN đồng quy
Câu 1:
a) Trong (SCD) kéo dài SM cắt CD tại N, Chứng minh N thuộc (SBM)
b) (SBM) ≡ (SBN). Giao tuyến cần tìm là SO
c) Trong (SBN) ta có MB giao SO tại I
d) Trong (ABCD) , ta có AB giao CD tại K, Trong (SCD), ta có KQ giao SC tại P
Từ đó suy ra được giao tuyến của hai mặt phẳng (SCD) và (ABM) là KQ
Câu 2:
a) Trong (ABCD) gọi M = AE ∩ DC => M ∈ AE, AE ⊂ ( C'AE) => M ∈ ( C'AE). Mà M ∈ CD => M = DC ∩ (C'AE)
b) Chứng minh M ∈ (SDC), trong (SDC) : MC' ∩ SD = F. Chứng minh thiết diện là AEC'F
Câu 3:
a) Chứng minh E, N là hai điểm chung của mặt phẳng (PMN) và (BCD)
b) EN ∩ BC = Q. Chứng minh Q là điểm cần tìm
Câu 4:
a) Chứng minh I, K là hai điểm chung của (BIC) và (AKD)
b) Gọi P = CI ∩ DN và Q = BI ∩ DM, chứng minh PQ là giao tuyến cần tìm
Câu 5:
a) Trong mặt phẳng (α) vì AB và CD không song song nên AB ∩ DC = E
=> E ∈ DC, mà DC ⊂ (SDC)
=> E ∈ ( SDC). Trong (SDC) đường thẳng ME cắt SD tại N
=> N ∈ ME mà ME ⊂ (MAB)
=> N ∈ ( MAB). Lại có N ∈ SD => N = SD ∩ (MAB)
b) O là giao điểm của AC và BD => O thộc AC và BD, mà AC ⊂ ( SAC)
=> O ∈( SAC), BD ⊂ (SBD) , O ∈ (SBD)
=> O là một điểm chung của (SAC) và (SBD), mặt khác S cũng là điểm chung của (SAC) và (SBD) => (SAC) ∩ (SBD) = SO
Trong mặt phẳng (AEN) gọi I = AM ∩ BN thì I thuộc AM và I thuộc BN
Mà AM ⊂ (SAC) => I ∈ (SAC), BN ⊂ ( SBD) => I ∈ (SBD). Như vậy I là điểm chung của (SAC) và (SBD) nên I thuộc giao tuyến SO của (SAC) và (SBD) tức là S, I, O thẳng hàng hay SO, AM, BN đồng quy