Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 10 2017 lúc 13:55

Chọn A.

Gọi I là tâm mặt cầu đi qua hai điểm A, B cố định và phân biệt thì ta luôn có IA = IB. Do đó I thuộc mặt phẳng trung trực của đoạn AB.

hoangngoclinh
Xem chi tiết
Nguyễn Quang Thắng
26 tháng 11 2017 lúc 20:24

Câu đúng là: b, c ,d ,e ,n , q

locdss9
26 tháng 11 2017 lúc 20:35

câu đúng là b;c;d;e;n;q

Bùi Phương Linh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 11 2017 lúc 7:47

___Vương Tuấn Khải___
Xem chi tiết
Xem chi tiết
Name Win
14 tháng 5 2023 lúc 22:19
Phạm Bích liễu Huỳnh
Xem chi tiết
Trần Văn Thành
Xem chi tiết
Nguyễn Ngọc Bảo Trâm
4 tháng 10 2016 lúc 20:22

Một câu hỏi quá dài , quá nhiều lại quá khó hiểu . Bạn chia thành từng bài đi cho giảm mệt!

Phan Bảo Ngọc
4 tháng 10 2016 lúc 20:16

hại não o_o

Kim Jisoo
16 tháng 12 2019 lúc 22:42

Mặc dù chưa tìm đc cách giải nhưng mk thấy vui vì bn là người đam mê học toán, học toán hết mk và trung thực. Bn sẽ thành công. Chúc bn học giỏi.

Khách vãng lai đã xóa
Trần Văn Thành
Xem chi tiết
KUDO SHINICHI
4 tháng 10 2016 lúc 16:26

cái này là toán lớp 1 là tớ chết liền

và sao dài vậy bạn

vừa lười + khó = ko làm

Dương Hoàng Minh
Xem chi tiết
Phạm Nhật An
23 tháng 6 2016 lúc 17:53

Câu 1:

a) Trong (SCD) kéo dài SM cắt CD tại N, Chứng minh N thuộc (SBM)

b) (SBM) ≡ (SBN). Giao tuyến cần tìm là SO

c) Trong (SBN) ta có MB giao SO tại I

d) Trong (ABCD) , ta có AB giao CD tại K, Trong (SCD), ta có KQ giao SC tại P

Từ đó suy ra được giao tuyến của hai mặt phẳng (SCD) và (ABM) là KQ



 

Phạm Nhật An
23 tháng 6 2016 lúc 17:56

Câu 2:

a) Trong  (ABCD) gọi M = AE ∩ DC => M ∈ AE, AE ⊂ ( C'AE) => M ∈ ( C'AE). Mà M ∈ CD => M = DC ∩ (C'AE)

b) Chứng minh M ∈ (SDC), trong  (SDC) : MC' ∩ SD = F. Chứng minh thiết diện là AEC'F



Câu 3:

a) Chứng minh E, N là hai điểm chung của mặt phẳng (PMN) và (BCD)

b) EN ∩ BC = Q. Chứng minh Q là điểm cần tìm

Câu 4:

a) Chứng minh I, K là hai điểm chung của (BIC) và (AKD)

b) Gọi P = CI ∩ DN và Q = BI ∩ DM, chứng minh PQ là giao tuyến cần tìm

 


Câu 5:

a) Trong mặt phẳng (α) vì AB và CD không song song nên AB ∩ DC = E

=> E ∈ DC, mà DC ⊂ (SDC)

=> E ∈ ( SDC). Trong (SDC) đường thẳng ME cắt SD tại N

=> N ∈ ME mà ME ⊂ (MAB)

=> N ∈ ( MAB). Lại có N ∈ SD => N = SD ∩ (MAB)

b) O là giao điểm của AC và BD => O thộc AC và BD, mà AC ⊂ ( SAC)

=> O ∈( SAC), BD ⊂ (SBD) , O ∈ (SBD)

=> O là một điểm chung của (SAC) và (SBD), mặt khác S cũng là điểm chung của (SAC) và (SBD) => (SAC) ∩ (SBD) = SO

Trong mặt phẳng (AEN) gọi I = AM ∩ BN thì I thuộc AM và I thuộc BN

Mà AM ⊂ (SAC) => I ∈ (SAC), BN ⊂ ( SBD) => I ∈ (SBD). Như vậy I là điểm chung của (SAC) và (SBD) nên I thuộc giao tuyến SO của (SAC) và (SBD) tức là S, I, O thẳng hàng hay SO, AM, BN đồng quy

Nguyễn Cao Bảo Ngân
23 tháng 6 2016 lúc 19:46

Nhìu thế!!!!batngo