Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thị Ngát
Xem chi tiết
ST
18 tháng 3 2018 lúc 15:30

a,Ta có: \(\frac{3}{10}=\frac{3}{10};\frac{3}{11}< \frac{3}{10};\frac{3}{12}< \frac{3}{10};\frac{3}{13}< \frac{3}{10};\frac{3}{14}< \frac{3}{10}\)

\(\Rightarrow S< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}=\frac{3}{2}=1,5\left(1\right)\)

Lại có: \(\frac{3}{10}>\frac{3}{15};\frac{3}{11}>\frac{3}{15};\frac{3}{12}>\frac{3}{15};\frac{3}{13}>\frac{3}{15};\frac{3}{14}>\frac{3}{15}\)

\(\Rightarrow S>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\left(2\right)\)

Từ (1) và (2) => 1 < S < 1,5 

Vậy...

b, \(A=\frac{1}{61}+\frac{1}{62}+...+\frac{1}{100}\)

\(=\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)+\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)

Ta có: \(\frac{1}{61}>\frac{1}{80};\frac{1}{62}>\frac{1}{80};...;\frac{1}{80}=\frac{1}{80}\)

\(\Rightarrow\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}=\frac{20}{80}=\frac{1}{4}\left(1\right)\)

Lại có: \(\frac{1}{81}>\frac{1}{100};\frac{1}{82}>\frac{1}{100};...;\frac{1}{100}=\frac{1}{100}\)

\(\Rightarrow\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{20}{100}=\frac{1}{5}\left(2\right)\)

Từ (1) và (2) => \(A>\frac{1}{4}+\frac{1}{5}=\frac{9}{20}\)

Vậy...

Nicky Grimmie
Xem chi tiết
Nguyễn Lê Hoàng
21 tháng 2 2017 lúc 22:16

A không thể lớn hơn 1 được

alibaba nguyễn
21 tháng 2 2017 lúc 23:00

Ta có:

\(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{40}{50}=\frac{4}{5}\)

\(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)

Từ đây ta suy ra 

A > \(\frac{4}{5}+\frac{1}{2}+\frac{1}{100}=1,31>1\)  

ngonhuminh
21 tháng 2 2017 lúc 23:09

Hình như có lần đã c/m A>6/5

Yến Phạm
Xem chi tiết
Bin
28 tháng 2 2017 lúc 16:28

 Vì A > 1/91+1/91+...+1/91=1/91*91=1

 Vậy A>1

Yến Phạm
Xem chi tiết
Đức Phạm
28 tháng 2 2017 lúc 11:27

30 số hạng đầu lớn hơn 1 

\(\frac{1}{10}+\frac{1}{11}+..+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+..+\frac{1}{20}=\frac{1}{2}\)\(\frac{1}{2}\)

\(\frac{1}{20}+\frac{1}{21}+..+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+..+\frac{1}{30}=\frac{1}{3}\)

\(\frac{1}{30}+\frac{1}{31}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{4}\)

=> \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{39}>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}>1\)

Lê Thị Tú Nguyên
Xem chi tiết
KAl(SO4)2·12H2O
7 tháng 4 2019 lúc 9:58

\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)

\(A=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)>\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)\)

\(A=\frac{1}{10}+\frac{99}{100}=1\)

=> A > 1

bin
7 tháng 4 2019 lúc 10:02

\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)

\(A=\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)

\(A=\frac{1}{20}+\frac{1}{21}+...+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)

\(A=\frac{1}{30}+\frac{1}{31}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+... +\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)

\(\Rightarrow A>1\)

tranthithutrang
7 tháng 4 2019 lúc 10:07

Ta thấy:1/10;1/11;1/12;1/13;...;1/99>1/100

=)1/10+1/11+1/12+1/13+...+1/100>1/100+1/100+1/100+1/100..+1/100=1/100.100=1

Vậy A>1

Đặng Tú Phương
Xem chi tiết
Dũng Lê Trí
22 tháng 6 2017 lúc 15:43

\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\)

\(=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)>\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)\)

\(=\frac{1}{10}+\frac{90}{100}>1\)

\(A>1\left(đpcm\right)\)

Thắng  Hoàng
9 tháng 10 2017 lúc 20:46

a>1(đpcm)

Nữ hoàng Băng giá
Xem chi tiết
Kurosaki Akatsu
18 tháng 3 2017 lúc 20:16

Ta có :

\(\frac{1}{10}>\frac{1}{20}\)

\(\frac{1}{11}>\frac{1}{20}\)

\(\frac{1}{12}>\frac{1}{20}\)     \(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+.....+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+....+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)(1)

.....

\(\frac{1}{19}>\frac{1}{20}\)

Ta có :

\(\frac{1}{20}>\frac{1}{30}\)

\(\frac{1}{21}>\frac{1}{30}\)

\(\frac{1}{22}>\frac{1}{30}\)      \(\Rightarrow\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+....+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+....+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)(2) 

........

\(\frac{1}{29}>\frac{1}{30}\)

Ta có :

\(\frac{1}{30}>\frac{1}{40}\)

\(\frac{1}{31}>\frac{1}{40}\)                \(\Rightarrow\frac{1}{30}+\frac{1}{31}+....+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+.....+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)(3)

.........

\(\frac{1}{39}>\frac{1}{40}\)

Từ 1 , 2 , 3 ,

=> \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+.....+\frac{1}{39}>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}>1\)

=> ....... > 1 

Mạnh Lê
18 tháng 3 2017 lúc 20:08

1/10+1/11+…+1/19 > 1/20+1/20+…+1/20 = 10/20 = 1/2 
1/20+1/21+…+1/29 > 1/30+1/30+…+1/30 = 10/30 = 1/3 
1/30+1/31+…+1/39 > 1/40+1/40+…+1/40 = 10/40 = 1/4 
\(\Rightarrow\)1/10+1/11+…+1/39 > 1/2+1/3+1/4 = 13/12 > 1

Ngưu Kim
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
4 tháng 8 2019 lúc 21:51
Trần Hoàng Trung
Xem chi tiết
Vampire Princess
6 tháng 5 2018 lúc 20:55

\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{100}\)

\(A< \frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{100.101}\)

\(A< \frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{101}\)

\(A< \frac{1}{10}-\frac{1}{101}=\frac{101}{1010}-\frac{10}{1010}=\frac{91}{1010}< \frac{505}{1010}\)

\(A< \frac{1}{2}\)