Cho A = \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\)
Hãy chứng minh A > 1
cho \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) không tính tổng S, hãy chứng minh S không phải 1 số tự nhiên
cho \(A=\frac{1}{61}+\frac{1}{62}+\frac{1}{63}+...+\frac{1}{99}+\frac{1}{100}\) . Chứng minh \(A>\frac{9}{20}\)
a,Ta có: \(\frac{3}{10}=\frac{3}{10};\frac{3}{11}< \frac{3}{10};\frac{3}{12}< \frac{3}{10};\frac{3}{13}< \frac{3}{10};\frac{3}{14}< \frac{3}{10}\)
\(\Rightarrow S< \frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}+\frac{3}{10}=\frac{15}{10}=\frac{3}{2}=1,5\left(1\right)\)
Lại có: \(\frac{3}{10}>\frac{3}{15};\frac{3}{11}>\frac{3}{15};\frac{3}{12}>\frac{3}{15};\frac{3}{13}>\frac{3}{15};\frac{3}{14}>\frac{3}{15}\)
\(\Rightarrow S>\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}+\frac{3}{15}=\frac{15}{15}=1\left(2\right)\)
Từ (1) và (2) => 1 < S < 1,5
Vậy...
b, \(A=\frac{1}{61}+\frac{1}{62}+...+\frac{1}{100}\)
\(=\left(\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}\right)+\left(\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}\right)\)
Ta có: \(\frac{1}{61}>\frac{1}{80};\frac{1}{62}>\frac{1}{80};...;\frac{1}{80}=\frac{1}{80}\)
\(\Rightarrow\frac{1}{61}+\frac{1}{62}+...+\frac{1}{80}>\frac{1}{80}+\frac{1}{80}+...+\frac{1}{80}=\frac{20}{80}=\frac{1}{4}\left(1\right)\)
Lại có: \(\frac{1}{81}>\frac{1}{100};\frac{1}{82}>\frac{1}{100};...;\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{81}+\frac{1}{82}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{20}{100}=\frac{1}{5}\left(2\right)\)
Từ (1) và (2) => \(A>\frac{1}{4}+\frac{1}{5}=\frac{9}{20}\)
Vậy...
cho A=\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\) chứng tỏ A>1
Ta có:
\(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{49}>\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}=\frac{40}{50}=\frac{4}{5}\)
\(\frac{1}{50}+\frac{1}{51}+...+\frac{1}{99}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{50}{100}=\frac{1}{2}\)
Từ đây ta suy ra
A > \(\frac{4}{5}+\frac{1}{2}+\frac{1}{100}=1,31>1\)
Cho tổng A =\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
Chứng tỏ A > 1
Cho tổng A =\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
Chứng tỏ A > 1
30 số hạng đầu lớn hơn 1
\(\frac{1}{10}+\frac{1}{11}+..+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+..+\frac{1}{20}=\frac{1}{2}\)\(\frac{1}{2}\)
\(\frac{1}{20}+\frac{1}{21}+..+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+..+\frac{1}{30}=\frac{1}{3}\)
\(\frac{1}{30}+\frac{1}{31}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}=\frac{1}{4}\)
=> \(\frac{1}{10}+\frac{1}{11}+...+\frac{1}{39}>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}>1\)
Cho \(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
Chứng tỏ rằng A > 1
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
\(A=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)>\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)\)
\(A=\frac{1}{10}+\frac{99}{100}=1\)
=> A > 1
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\)
\(A=\frac{1}{10}+\frac{1}{11}+...+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)
\(A=\frac{1}{20}+\frac{1}{21}+...+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)
\(A=\frac{1}{30}+\frac{1}{31}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+... +\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)
\(\Rightarrow A>1\)
Ta thấy:1/10;1/11;1/12;1/13;...;1/99>1/100
=)1/10+1/11+1/12+1/13+...+1/100>1/100+1/100+1/100+1/100..+1/100=1/100.100=1
Vậy A>1
Cho tổng A=\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...\frac{1}{99}+\frac{1}{100}\)
Chứng tỏ rằng A > 1
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{100}\)
\(=\frac{1}{10}+\left(\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}\right)>\frac{1}{10}+\left(\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\right)\)
\(=\frac{1}{10}+\frac{90}{100}>1\)
\(A>1\left(đpcm\right)\)
Chứng minh:\(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+...+\frac{1}{99}+\frac{1}{100}>1\)
Ta có :
\(\frac{1}{10}>\frac{1}{20}\)
\(\frac{1}{11}>\frac{1}{20}\)
\(\frac{1}{12}>\frac{1}{20}\) \(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+.....+\frac{1}{19}>\frac{1}{20}+\frac{1}{20}+....+\frac{1}{20}=\frac{10}{20}=\frac{1}{2}\)(1)
.....
\(\frac{1}{19}>\frac{1}{20}\)
Ta có :
\(\frac{1}{20}>\frac{1}{30}\)
\(\frac{1}{21}>\frac{1}{30}\)
\(\frac{1}{22}>\frac{1}{30}\) \(\Rightarrow\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+....+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+....+\frac{1}{30}=\frac{10}{30}=\frac{1}{3}\)(2)
........
\(\frac{1}{29}>\frac{1}{30}\)
Ta có :
\(\frac{1}{30}>\frac{1}{40}\)
\(\frac{1}{31}>\frac{1}{40}\) \(\Rightarrow\frac{1}{30}+\frac{1}{31}+....+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+.....+\frac{1}{40}=\frac{10}{40}=\frac{1}{4}\)(3)
.........
\(\frac{1}{39}>\frac{1}{40}\)
Từ 1 , 2 , 3 ,
=> \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+.....+\frac{1}{39}>\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}>1\)
=> ....... > 1
1/10+1/11+…+1/19 > 1/20+1/20+…+1/20 = 10/20 = 1/2
1/20+1/21+…+1/29 > 1/30+1/30+…+1/30 = 10/30 = 1/3
1/30+1/31+…+1/39 > 1/40+1/40+…+1/40 = 10/40 = 1/4
\(\Rightarrow\)1/10+1/11+…+1/39 > 1/2+1/3+1/4 = 13/12 > 1
a) Cho \(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+\frac{1}{60}\)
Chứng minh \(\frac{3}{5}< S< \frac{4}{5}\)
b) Chứng minh \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+......+\frac{1}{100}>\frac{7}{10}\)
c) Chứng minh \(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) không là số tự nhiên d) Chứng minh \(\frac{1}{15}< D< \frac{1}{10}với\) \(D=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{99}{100}\)Bạn tham khảo ở link này nhé :
Cho A =\(\frac{1}{10}\)+ \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{100}\)Hãy so sánh A với \(\frac{1}{2}\)
\(A=\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{100}\)
\(A< \frac{1}{10.11}+\frac{1}{11.12}+...+\frac{1}{100.101}\)
\(A< \frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+...+\frac{1}{100}-\frac{1}{101}\)
\(A< \frac{1}{10}-\frac{1}{101}=\frac{101}{1010}-\frac{10}{1010}=\frac{91}{1010}< \frac{505}{1010}\)
\(A< \frac{1}{2}\)