Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Mai Chi
Xem chi tiết
FC TF Gia Tộc và TFBoys...
23 tháng 1 2016 lúc 20:21

2^n =10a +b . do 0<b<9 
=> b là chữ số tậm cùng của 2^n 
xét n=4k tức n chia hết cho 4 
=> 2^n có tận cùng là 6 
=> b=6 => ab chia hết cho 6 
xét n=4k + r với 1 ≤ r ≤ 3 và r là số nguyên 
=> 2^n =10a + b 
=> b chia hết cho 2 ,giờ ta phải cm a chia hết cho 3 
2^n =(2^4k)*2^r do 2^4k luôn có tận cùng là 6 mà 2 ≤ 2^r ≤8 
=> 2^4k *2^r có tận cùng thuộc { 2,4,8} 
=> b= 2^r vs r nguyên và 1 ≤ r ≤ 3 
=> 10 a =2^n -b =2^n -2^r =2^r ( 2^4k -1) chia hết cho 3 ( do 2^4k -1 chia hết cho 3) 
=> 10a chia hết cho 3 => a chia hết cho 3 
mà b chia hết cho 2 
=> ab chia hết cho 6

công chúa Ori
23 tháng 7 2016 lúc 20:18

bạn ơi, bạn có biết giải bài này bằng đồng dư thức không?

diệp
29 tháng 3 2018 lúc 22:50

bạn ơi!sao b=2^r

Nguyen Ngoc Diep
Xem chi tiết
Nguyễn Hữu Hoàng Hải Anh
Xem chi tiết
supersaiya
Xem chi tiết
supersaiya
16 tháng 2 2016 lúc 17:46

cho n thuộc N và n > 3

Đoàn Phương Anh
Xem chi tiết
Lê Minh Ngọc
18 tháng 1 2018 lúc 21:09

câu này hay ghê

❊ Linh ♁ Cute ღ
18 tháng 2 2018 lúc 20:58

em mới lp 7 nên e hổng bt lm

sorry cj nhé

nhìn cx khó nhỉ

Lữ- Khách- Vô-Tình
3 tháng 4 2018 lúc 20:09

do n > 3 => 2^n >= 2^4 chia hết cho 16 => 10a + b chia hết cho 16 

Ta có 2^n có thể có những tân cùng là 2; 4; 6; 8 

TH1 2^n có tận cùng là 2 => n = 4k+1 

=> 10a + b có tận cùng là 2 => b = 2 ( do b < 10) 

ta có 2^n = 10a + 2 => 2( 2^(4k) - 1) = 10a => 2^( 4k) - 1 = 5a 

do 2^(4k) - 1 chia hết cho 3 => 5a chia hết cho 3 => a chia hết cho 3 

=> a.b = a.2 chia hết cho 6 (1) 

TH2 2^n có tận cùng là 4 => n = 4k +2 

=> 2^n = 10a + b có tận cùng là 4 => b = 4( do b <10) 

=> 2^(4k +2) = 10a + 4 => 4.2^(4k) - 4 = 10a 

=> 4(2^4k - 1) = 10 a 

ta có 2 ^4k -1chia hết cho 3 => 10a chia hết cho 3 => a chia hết cho 3 

=> a.b chia hết cho 6 (2) 

Th3 2^n có tận cùng là 8 => n = 4k +3 

TH 3 2^n có tận cùng là 6 => n = 4k 

bằng cách làm tương tự ta luôn có a.b chia hết cho 6

Ẩn danh
Xem chi tiết
Thanh Hải Phạm
Xem chi tiết
Lê Hoàng
Xem chi tiết
Akai Haruma
29 tháng 10 lúc 22:53

$a$ có thỏa mãn $0< a< 10$ không hả bạn?

Khiêm Nguyễn Gia
Xem chi tiết

Để chứng minh rằng tích ab chia hết cho 6, ta cần chứng minh rằng một trong hai số a hoặc b chia hết cho 2 và một trong hai số a hoặc b chia hết cho 3.

Giả sử a chia hết cho 2, khi đó a có thể là 2, 4, 6 hoặc 8. Ta sẽ xét từng trường hợp:

Nếu a = 2, thì n = 10a + b = 20 + b. Vì n > 3, nên b > 0. Khi đó, tích ab = 2b chia hết cho 2.

Nếu a = 4, thì n = 10a + b = 40 + b. Vì n > 3, nên b > -37. Khi đó, tích ab = 4b chia hết cho 2.

Nếu a = 6, thì n = 10a + b = 60 + b. Vì n > 3, nên b > -57. Khi đó, tích ab = 6b chia hết cho 2.

Nếu a = 8, thì n = 10a + b = 80 + b. Vì n > 3, nên b > -77. Khi đó, tích ab = 8b chia hết cho 2.

Ta đã chứng minh được rằng nếu a chia hết cho 2, thì tích ab chia hết cho 2.

Tiếp theo, ta chứng minh rằng một trong hai số a hoặc b chia hết cho 3. Ta có thể sử dụng phương pháp tương tự như trên để chứng minh điều này.

Vì tích ab chia hết cho cả 2 và 3, nên tích ab chia hết cho 6.

Vậy, ta đã chứng minh được rằng nếu n = 10a + b (a, b  N, 0 < a < 10), thì tích ab chia hết cho 6.

Lưu Phúc Bình An
10 tháng 12 2023 lúc 20:40

Rảnh à?