Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + z 2 = 9 . Tâm I và bán kính R của (S) lần lượt là
A. I(1;-2;0); R=3
B. I(-1;2;0); R=3
C. I(1;-2;0); R=9
D. I(-1;2;0); R=9
#2H3Y1-3~Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S): (x+1)²+(y-2)²+(z-1)²=9. Tìm tọa độ tâm I và tính bán kính R của mặt cầu (S).
A. I(-1;2;1) và R=3
B. I(-1;2;1) và R=9
C. I(1;-2;-1) và R=3
D. I(1;-2;-1) và R=9.
Đáp án A
Mặt cầu (S) có tâm I(-1;2;1) và bán kính R=√9=3.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) : x²+y²+z²-2x+4z+1=0. Tâm của mặt cầu là điểm:
A. I(1;-2;0)
B. I(1;0;-2)
C. I(-1;2;0)
D. I(0;1;2).
Đáp án B
Ta có (S): (x-1)²+y²+(z+2)²=4 => (S) có tâm I(1;0;-2).
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : x + 1 2 + y - 3 2 + z - 2 2 = 9 Tọa độ tâm và bán kính của mặt cầu (S) là
A. I(-1;3;2) R =9
B. I(1;-3;-2) R = 9
C. I(-1;3;2) R = 3
D. I(1;3;2) R = 3
Đáp án C
Tọa độ tâm và bán kính mặt cầu (S): I(-1;3;2) R = 3
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x²+y²+z²-x+2y+1=0. Tìm tọa độ tâm I và bán kính R của (S).
A. I(-1/2;1;0) và R = 1/4
B. I(1/2;1;0) và R = 1/2
C. I(1/2;-1;0) và R = 1/2
D. I(-1/2;1;0) và R = 1/2
Đáp án C
Theo công thức tính tâm và bán kính mặt cầu từ phương trình tổng quát, với a = - 1/2, b = 1, c = 0 và d=1 ta có tâm I(1/2;-1;0) và R = 1/2
#2H3Y1-3~Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x-5)² + (y-1)² + (z+2)²=9. Tính bán kính R của mặt cầu (S).
A. R=18
B. R=9
C. R=3
D. R=6.
Đáp án C
Mặt cầu (S) có tâm I(a; b; c) và bán kính R thì có phương trình (x-a)²+(y-b)²+(z-c)²=R².
Theo đề bài ta có R²=9=> R=3.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x 2 + y 2 + z 2 - 8 x + 2 y + 1 = 0 . Tìm tọa độ tâm và bán kính của mặt cầu (S)
A. I(-4;1;0), R=2
B. I(-4;1;0), R=4
C. I(4;1;0), R=2
D. I(4;-1;0), R=4
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S ): ( x-5 )²+( y-1 )²+( z+2 )²=16. Tính bán kính của (S).
A. 4
B. 16
C. 7
D. 5.
Đáp án A
Bán kính của mặt cầu ( S ) là R=√16 =4.
Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu ( S ) : ( x - 5 ) 2 + ( y - 1 ) 2 + ( z + 2 ) 2 = 9 . Bán kính R của mặt cầu (S) là
A. 3
B. 6
C. 9
D. 18
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu có phương trình ( S ) : x 2 + y 2 + z 2 - 4 x + 2 y - 6 z + 1 = 0 . Tọa độ tâm mặt cầu là
A. (-4;2;-6)
B. (2;-1;3)
C. (-2;1;-3)
D. (4;-2;-6)
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu S : x − 2 2 + y − 1 2 + z 2 = 1 và mặt phẳng Q : 2 x − 2 y − z + 1 = 0 . Viết phương trình mặt cầu (S') đối xứng với mặt cầu (S) qua mặt phẳng (Q)
A. x + 2 3 2 + y − 7 3 2 + z − 2 3 2 = 1
B. x − 2 3 2 + y − 7 3 2 + z + 2 3 2 = 1
C. x − 2 3 2 + y + 7 3 2 + z − 2 3 2 = 1
D. x − 2 3 2 + y − 7 3 2 + z − 2 3 2 = 1
Đáp án D
Mặt cầu S 1 có tâm M(2;1;0) và có bán kính R 1 = 1
Gọi M' là hình chiếu vuông góc của M trên mặt phẳng (Q)
Ta có M M ' ⊥ Q nên đường thẳng MM' đi qua điểm M và nhận vectơ pháp tuyến của mặt phẳng (Q) làm vectơ chỉ phương.
=> phương trình tham số đường thẳng MM': x = 2 + 2 t y = 1 − 2 t z = − t , t ∈ ℝ
Vì M' là hình chiếu vuông góc của M trên mặt phẳng Q ⇒ M ' = M M ' ∩ Q
=> tọa độ điểm M' là nghiệm hệ phương trình:
2 x − 2 y − z + 1 = 0 x = 2 + 2 t y = 1 − 2 t z = − t ⇔ 2 2 + t − 2 1 − 2 t − − t + 1 = 0 x = 2 + 2 t y = 1 − 2 t z = − t ⇔ t = − 1 3 x = 4 3 y = 5 3 z = 1 3
⇒ M ' 4 3 ; 5 3 ; 1 3
Gọi I(x;y;z) là tâm của mặt cầu (S'), do mặt cầu (S') đối xứng với mặt cầu (S) qua mặt phẳng (Q) => I đối xứng với M qua mặt phẳng (Q)
=> I đối xứng với M qua mặt phẳng M'
=> M' là trung điểm của đường thẳng IM.
⇒ x = 2 x M ' − x M = 2 3 y = 2 y M ' − y M = 7 3 z = 2 z M ' − z M = 2 3 ⇒ I 2 3 ; 7 3 ; 2 3
Khi đó mặt cầu (S') có tâm I 2 3 ; 7 3 ; 2 3 , bán kính R' = R = 1 nên có phương trình:
x − 2 3 2 + y − 7 3 2 + z − 2 3 2 = 1