Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 6 2019 lúc 17:44

Chọn D.

Vì un+1 = un.e nên dễ thấy dãy số (un) là cấp số nhân có công bội q = e

ln2u6 – (ln u8 +ln u4) + 1 = 0 ln2u6 – (ln u8u4) + 1 = 0 (ln u6 – 1)2 = 0

ln u6 = 1 u6 = e u1 = e-4

Đỗ Quang Minh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 7 2019 lúc 18:00

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 2 2018 lúc 10:46

Chọn đáp án C.

Tuân Wai
Xem chi tiết
Lê Song Phương
22 tháng 10 2023 lúc 21:58

Xét hàm số \(f\left(x\right)=\dfrac{x^{2022}+3x+16}{x^{2021}-x+11}\), ta cần cm

 \(f\left(x\right)\ge x\) (*)

Thật vậy, (*) \(\Leftrightarrow x^{2022}+3x+16\ge x^{2022}-x^2+11x\)

\(\Leftrightarrow x^2-8x+16\ge0\)

 \(\Leftrightarrow\left(x-4\right)^2\ge0\) (luôn đúng)

Vậy \(f\left(x\right)\ge x,\forall x\)

\(\Rightarrow u_{n+1}=f\left(u_n\right)\ge u_n\) nên \(\left(u_n\right)\) là dãy tăng.

Kuramajiva
Xem chi tiết
xin gam
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 1 2022 lúc 21:59

\(u_{n+1}=\dfrac{n\left(u_n+2\right)+n^2+1}{n+1}\)

\(\Rightarrow\left(n+1\right)u_{n+1}=nu_n+n^2+2n+1\)

\(\Rightarrow\left(n+1\right)u_{n+1}-\dfrac{1}{3}\left(n+1\right)^3-\dfrac{1}{2}\left(n+1\right)^2-\dfrac{1}{6}\left(n+1\right)=n.u_n-\dfrac{1}{3}n^3-\dfrac{1}{2}n^2-\dfrac{1}{6}n\)

Đặt \(v_n=u.u_n-\dfrac{1}{3}n^3-\dfrac{1}{2}n^2-\dfrac{1}{6}n\Rightarrow\left\{{}\begin{matrix}v_1=1-\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{1}{6}=0\\v_{n+1}=v_n=...=v_1=0\end{matrix}\right.\)

\(\Rightarrow n.u_n-\dfrac{1}{3}n^3-\dfrac{1}{2}n^2-\dfrac{1}{6}n=0\)

\(\Rightarrow u_n=\dfrac{1}{3}n^2+\dfrac{1}{2}n+\dfrac{1}{6}=\dfrac{\left(n+1\right)\left(2n+1\right)}{6}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
12 tháng 1 2018 lúc 5:26

Chọn C.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 11 2019 lúc 16:17

Đáp án C

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 6 2018 lúc 12:16