Cho hàm số f ( x ) = x 4 - 24 x 2 - 12 có đồ thị (C). Có bao nhiêu điểm M có tọa độ nguyên thuộc (C) sao cho tiếp tuyến tại M cắt (C) tại hai điểm phân biệt A, B khác M?
A. 5
B. 7
C. 12
D. 11
Cho hàm số y=f(x)=3X
a, Vẽ đồ thị hàm số
b, Tính f(5); f(-7/12)
c, Các điểm M( -2:6), C( 4/9; 4/3) có thuộc đồ thị hàm số không ? Vì sao
Cho hàm số y= f( x) và đồ thị hình bên là đồ thị của hàm y= f’ ( x) . Hỏi đồ thị của hàm số g ( x ) = 2 f ( x ) - x - 1 2 có tối đa bao nhiêu điểm cực trị ?
A. 6.
B. 7.
C. 8.
D. 9.
Đặt h( x) = 2f( x) – ( x-1) 2
Suy ra đạo hàm: h’( x) = 2f’(x) -2( x-1).
Ta vẽ thêm đường thẳng y= x-1.
Ta có h’ (x) =0 khi f’(x) =x-1
Suy ra x=0; x=1; x=2; x=3
Theo đồ thị h’(x) > .0 khi f’(x) > x-1
Ta có :
Đồ thị hàm số g( x) có nhiều điểm cực trị nhất khi h( x) có nhiều giao điểm với trục hoành nhất.
Vậy đồ thị hàm số h( x) cắt trục hoành tại nhiều nhất 4 điểm, suy ra đồ thị hàm số g(x) có tối đa 7 điểm cực trị.
Chọn B.
Cho hàm số f(x) có đạo hàm cấp hai f'''(x) liên tục trên R và đồ thị hàm số f(x) như hình vẽ bên. Biết rằng hàm số f(x) đạt cực đại tại điểm x=1; đường thẳng ∆ trong hình vẽ bên là tiếp tuyến của đồ thị hàm số f(x) tại điểm có hoành độ x=2. Tích phân ∫ 0 ln 3 e x f ' ' ( e x + 1 2 ) d x bằng
A. 8
B. 4
C. 3
D. 6
Chọn đáp án D
Do hàm số đạt cực đại tại điểm x=1⇒ f′(1) = 0 và đường thẳng Δ qua hai điểm (0;−3);(1;0) nên có phương trình y=3x−3.
Vì Δ là tiếp tuyến của đồ thị hàm số f(x) tại điểm có hoành độ x = 2 ⇒ f ' ( 2 ) = k △ =3
Vậy
Bài tập 1: Cho hàm số y = f(x) = 3/2 * x ^ 2 1) Hãy tính f(- 2) f(3) f(sqrt(5)) : f(- (sqrt(2))/3) 2) Các điểm (26), B(- sqrt(2); 3) , C(- 4; - 24) D(1/(sqrt(2)), 3/4) có thuộc đồ thị hàm số không?
a: \(F\left(-2\right)=\dfrac{3}{2}\cdot\left(-2\right)^2=\dfrac{3}{2}\cdot4=6\)
F(3)=3/2*3^2=27/2
\(F\left(\sqrt{5}\right)=\dfrac{3}{2}\cdot\left(\sqrt{5}\right)^2=\dfrac{3}{2}\cdot5=\dfrac{15}{2}\)
\(F\left(-\dfrac{\sqrt{2}}{3}\right)=\dfrac{3}{2}\cdot\dfrac{2}{9}=\dfrac{3}{9}=\dfrac{1}{3}\)
b: \(F\left(-2\right)=\dfrac{3}{2}\cdot\left(-2\right)^2=\dfrac{3}{2}\cdot4=6\)
=>A thuộc (P)
\(F\left(-\sqrt{2}\right)=\dfrac{3}{2}\cdot\left(-\sqrt{2}\right)^2=\dfrac{3}{2}\cdot2=3\)
=>B thuộc (P)
\(F\left(-4\right)=\dfrac{3}{2}\cdot\left(-4\right)^2=\dfrac{3}{2}\cdot16=\dfrac{48}{2}=24\)
=>C ko thuộc (P)
F(1/căn 2)=3/2*1/2=3/4
=>D thuộc (P)
Cho hàm số y=f(x)=x^3+ax^2+bx+4 có đồ thị (C) như hình vẽ. Hỏi (C) là đồ thị của hàm số y=f(x) nào?
A. y = f ( x ) = x 3 - 3 x 2 + 4
B. y = f ( x ) = x 3 + 6 x 2 + 9 x + 4
C. y = f ( x ) = x 3 + 3 x 2 + 4
D. y = f ( x ) = x 3 - 6 x 2 + 9 x + 4
Cho hàm số y=f(x). Hàm số y= f’(x) có đồ thị như hình vẽ dưới đây.
Đặt g ( x ) = 2 f ( x ) - x + 1 2 .Biết f(-2)=f(3). Mệnh đề nào đúng?
A.
B
C.
D.
Cho hàm số y = f(x) có đạo hàm liên tục trên đoạn [-3;3] và đồ thị y = f’(x) như hình vẽ. Đặt g x = 2 f x + x 2 + 4 . Biết f(1)=-24. Hỏi g(x) = 0 có bao nhiêu nghiệm thực?
A. 1
B. 4
C. 2
D. 0
Cho hàm số bậc ba f(x) và g x = f m x 2 + n x + p m , n , p ∈ có đồ thị như hình dưới (Đường nét liền là đồ thị hàm số f(x) , nét đứt là đồ thị của hàm g(x) đường thẳng x = - 1 2 là trục đối xứng của đồ thị hàm số g(x)
Giá trị của biểu thức P = n + m m + p p + 2 n bằng bao nhiêu?
A.12
B.16
C.24
D.6
Cho hàm sốy=f(x) có đạo hàm f'(x) trên tập số thực ℝ và đồ thị của hàm số y=f(x) như hình vẽ. Khi đó, đồ thị của hàm số y = ( f ( x ) ) 2 có
A. 2 điểm cực đại, 2 điểm cực tiểu
B. 2 điểm cực tiểu, 3 điểm cực đại
C. 1 điểm cực đại, 3 điểm cực tiểu
D. 2 điểm cực đại, 3 điểm cực tiểu
Từ đồ thị hàm số f(x) ta thấy đồ thị cắt trục hoành tại ba điểm phân biệt có hoành độ x=0;x=1;x=3
Lại thấy đồ thị hàm số y=f(x) có ba điểm cực trị nên
Hàm số y = f x 2 có đạo hàm y'=2f(x).f '(x)
Xét phương trình
Ta có BXD của y' như sau
Nhận thấy hàm số y = f x 2 có y' đổi dấu từ âm sang dương tại ba điểm x=0;x=1;x=3 nên hàm số có ba điểm cực tiểu. Và y' đổi dấu từ dương sang âm tại hai điểm x = x 1 ; x = x 2 nên hàm số có hai điểm cực đại.
Chọn đáp án D.
Cho hàm số y = f(x) có đạo hàm f'(x) trên khoảng ( - ∞ ; + ∞ ) . Đồ thị hàm số y = f(x) như hình vẽ
Đồ thị của hàm số y = ( f ( x ) ) 2 có bao nhiêu điểm cực đại, cực tiểu?
A. 2 điểm cực đại, 3 điểm cực tiểu.
B. 1 điểm cực đại, 3 điểm cực tiểu.
C. 2 điểm cực đại, 2 điểm cực tiểu.
A. 3 điểm cực đại, 2 điểm cực tiểu.