Cho M là điểm trên đồ thị hàm số y=-x/3 có tung độ bằng 3. Vậy hoành độ của điểm M có giá trị là
Cho M là điểm trên đồ thị hàm số \(y=-\frac{x}{3}\) có tung độ bằng 3.Vậy hoành độ của điểm M có giá trị là
Kèm theo cách giải
M=y=-3/x có tung độ là 3
<=>y=3
khi đó y=-3/x<=>3=-3/x
<=>3x=-3<=>x=-1
Vậy hoành độ của M=-1
cho hàm số y=(2m+1)x-m+3 (1) a,xác định giá trị của m để đồ thị của hàm số cắt trục tung tại điểm có tung độ bằng. b,xác định giá trị của m để đồ thị của hàm số cắt trục hoành tại điểm có hoành độ bằng -3. c,vẽ đồ thị của hàm số ứng với giá trị của m vừa tìm được ở các câu a và b trên cùng hệ trục toạ độ oxy.tìm giao điểm của hai đường thẳng vừa vẽ được. d,tìm điểm cố định mà đồ thị hàm số (1) luôn đi qua với mọi m
a: Bạn bổ sung đề đi bạn
b: thay x=-3 và y=0 vào (d), ta được:
\(-3\left(2m+1\right)-m+3=0\)
=>-6m-3-m+3=0
=>-7m=0
=>m=0
d: y=(2m+1)x-m+3
=2mx+x-m+3
=m(2x-1)+x+3
Tọa độ điểm cố định mà (1) luôn đi qua là:
\(\left\{{}\begin{matrix}2x-1=0\\y=x+3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=3+\dfrac{1}{2}=\dfrac{7}{2}\end{matrix}\right.\)
Bài 2: Cho hàm số: y = (m + 5)x – m Xác định giá trị của tham số m để đồ thị hàm số: a) Cắt trục hoành tại điểm có hoành độ bằng 3 b) Cắt trục tung tại điểm có tung độ bằng -4
Cho hàm số: y=(m-2)x+n có đồ thị là đường thẳng (d).Tìm giá trị của m và n để đồ thị (d) của hàm số:
a)Đi qua 2 điểm A(-1;2) và B(3;-4)
b) Cắt trục tung tại điểm có tung độ bằng 1-\(\sqrt{2}\) và cắt trục hoành tại điểm có hoành độ bằng 2+\(\sqrt{2}\)
c) Vuông góc với đường thẳng 2y+x-3=0 và đi qua A(1;3)
d) Song song với đường thẳng 3x+2y=1 và đi qua B(1;2)
a: Thay x=-1 và y=2 vào (d), ta được:
\(-\left(m-2\right)+n=2\)
=>-m+2+n=2
=>-m+n=0
=>m-n=0(1)
Thay x=3 và y=-4 vào (d), ta được:
\(3\left(m-2\right)+n=-4\)
=>3m-6+n=-4
=>3m+n=2(2)
Từ (1) và (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}m-n=0\\3m+n=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m-n+3m+n=2\\m-n=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}4m=2\\n=m\end{matrix}\right.\Leftrightarrow n=m=\dfrac{1}{2}\)
b: Thay x=0 và \(y=1-\sqrt{2}\) vào (d), ta được:
\(0\left(m-2\right)+n=1-\sqrt{2}\)
=>\(n=1-\sqrt{2}\)
Vậy: (d): \(y=\left(m-2\right)x+1-\sqrt{2}\)
Thay \(x=2+\sqrt{2}\) và y=0 vào (d), ta được:
\(\left(m-2\right)\cdot\left(2+\sqrt{2}\right)+1-\sqrt{2}=0\)
=>\(\left(m-2\right)\left(2+\sqrt{2}\right)=\sqrt{2}-1\)
=>\(m-2=\dfrac{\sqrt{2}-1}{2+\sqrt{2}}=\dfrac{-4+3\sqrt{2}}{2}\)
=>\(m=\dfrac{-4+3\sqrt{2}+4}{2}=\dfrac{3\sqrt{2}}{2}\)
c: 2y+x-3=0
=>2y=-x+3
=>\(y=-\dfrac{1}{2}x+\dfrac{3}{2}\)
Để (d) vuông góc với đường thẳng y=-1/2x+3/2 thì
\(-\dfrac{1}{2}\left(m-2\right)=-1\)
=>m-2=2
=>m=4
Vậy: (d): \(y=\left(4-2\right)x+n=2x+n\)
Thay x=1 và y=3 vào y=2x+n, ta được:
\(n+2\cdot1=3\)
=>n+2=3
=>n=1
d: 3x+2y=1
=>\(2y=-3x+1\)
=>\(y=-\dfrac{3}{2}x+\dfrac{1}{2}\)
Để (d) song song với đường thẳng \(y=-\dfrac{3}{2}x+\dfrac{1}{2}\) thì
\(\left\{{}\begin{matrix}m-2=-\dfrac{3}{2}\\n\ne\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=\dfrac{1}{2}\\n\ne\dfrac{1}{2}\end{matrix}\right.\)
Vậy: (d): \(y=\left(\dfrac{1}{2}-2\right)x+n=-\dfrac{3}{2}x+n\)
Thay x=1 và y=2 vào (d), ta được:
\(n-\dfrac{3}{2}=2\)
=>\(n=2+\dfrac{3}{2}=\dfrac{7}{2}\left(nhận\right)\)
Cho hàm số y = ( - 1 ) / 2 x 2 .
a) Trên đồ thị của hàm số này, xác định điểm D có hoành độ bằng 3. Tìm tung độ của điểm D bằng hai cách: bằng đồ thị; bằng cách tính y với x = 3. So sánh hai kết quả.
b) Trên đồ thị làm số này, xác định điểm có tung độ bằng -5. Có mấy điểm như thế ? Không làm tính, hãy ước lượng giá trị hoành độ của mỗi điểm.
a) Từ đồ thị, ta xác định được tung độ của điểm D là (-9)/2
Với x = 3 ta có: y = ( - 1 ) / 2 x 2 = ( - 1 ) / 2 . 3 2 = ( - 9 ) / 2
Hai kết quả là như nhau.
b) Có 2 điểm có tung độ bằng -5
Giá trị của hoành độ của hai điểm lần lượt là ≈ -3,2 và ≈ 3,2
Cho hàm số y = (m - 1)x + m (d)
a) Xác định m để (d) cắt trục tung tại điểm có tung độ bằng 2.
b) Xác định m để (d) cắt trục hoành tại điểm có hoành độ bằng -3.
c) Vẽ đồ thị của 2 hàm số ứng với giá trị của m vừa tìm đc ở câu (a) và (b) trên cùng mặt phẳng tọa độ Oxy, rồi tìm giao điểm của chúng.
a: Thay x=0 và y=2 vào (d), ta được:
\(0\left(m-1\right)+m=2\)
=>m+0=2
=>m=2
b: Thay x=-3 vào y=0 vào (d), ta được:
\(-3\left(m-1\right)+m=0\)
=>-3m+3+m=0
=>-2m+3=0
=>-2m=-3
=>\(m=\dfrac{3}{2}\)
c: Khi m=2 thì (d): \(y=\left(2-1\right)x+2=x+2\)
Khi m=3/2 thì (d): \(y=\left(\dfrac{3}{2}-1\right)x+\dfrac{3}{2}=\dfrac{1}{2}x+\dfrac{3}{2}\)
Tọa độ giao điểm của hai đường thẳng này là nghiệm của hệ phương trình sau:
\(\left\{{}\begin{matrix}x+2=\dfrac{1}{2}x+\dfrac{3}{2}\\y=x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-\dfrac{1}{2}x=\dfrac{3}{2}-2\\y=x+2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{1}{2}x=-\dfrac{1}{2}\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1+2=1\end{matrix}\right.\)
Cho hàm số y = (m − 2)x + 5 có đồ thị là đường thẳng (d) (m là tham số, 𝑚 ≠ 2) a) Vẽ đồ thị hàm số trên với 𝑚 = 4 b) Tìm m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ là 2. c) Tìm m để đồ thị cắt trục tung tại điểm có tung độ -3.
Cho hàm số y=-2x+3 có đồ thị (D)
1 Tìm điểm M nằm trên đò thị có hoành độ bằng tung độ
2 Tìm điểm N nằm trên đồ thị có tung độ bằng 4 lần hoành độ
3 Tìm điểm A nằm trên độ thị có hoành độ bằng 2 lần tung độ
Cho hàm số y = (m -3)x + 3m + 7 (d) (m ≠3). Tìm m để:
1) Hàm số đồng biến?
2) Hàm số trên đi qua gốc tọa độ
3) Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng -2
4) Đồ thị hàm số cắt trục hoành tại điểm của hoành độ bằng 1
5) Đồ thị hàm số đi qua điểm A (-1; -2)
6) Đồ thị của hàm số đã cho với đồ thị của các hàm số y= -x + 5 và y = 2x-1 đồng quy
7) Tìm m để khoảng cách từ gốc tọa độ đến đường thẳng (d) lớn nhất
1: Để hàm số đồng biến thì m-3>0
hay m>3
2: Thay x=0 và y=0 vào (d), ta được:
3m+7=0
hay \(m=-\dfrac{7}{3}\)