Có bao nhiêu cách sắp xếp 10 người ngồi vào 10 ghế hàng ngang?
A. 3028800
B. 3628880
C. 3628008
D. 3628800
Có bao nhiêu cách sắp xếp 10 người ngồi vào 10 ghế hàng ngang?
A. 3028800
B. 3628880
C. 3628008
D. 3628800
Có bao nhiêu cách xếp chỗ cho 4 bạn nữ và 6 bạn nam ngồi vào 10 ghế mà không có hai bạn nữ nào ngồi cạnh nhau, nếu
a) Ghế sắp thành hàng ngang?
b) Ghế sắp quanh một bàn tròn?
a) Xếp 6 nam vào 6 ghế cạnh nhau. Có 6! cách.
Giữa các bạn nam có 5 khoảng trống cùng hai đầu dãy, nên có 7 chỗ có thể đặt ghế cho nữ.
Bây giờ chọn 4 trong 7 vị trí để đặt ghế. Có cách.
Xếp nữ vào 4 ghế đó. Có 4! cách.
Vậy có cách xếp mà không có hai bạn nữ nào ngồi cạnh nhau.
b) Xếp 6 ghế quanh bàn tròn rồi xếp nam vào ngồi. Có 5! cách.
Giữa hai nam có khoảng trống. Xếp 4 nữ vào 4 trong 6 khoảng trống đó. Có cách.
Theo quy tắc nhân, có cách.
Có bao nhiêu cách xếp chỗ cho 4 bạn nữ và 6 bạn nam ngồi vào 10 ghế mà không có hai bạn nữ nào ngồi cạnh nhau, nếu :
a) Ghế sắp thành hàng ngang ?
b) Ghế sắp quanh một bàn tròn
Số cách sắp xếp 4 người ngồi vào 4 trong 10 chiếc ghế trên một hàng ngang là?
A. 4 !
B. C 10 4 .
C. 4 10
D. A 10 4 .
Một nhóm 10 học sinh gồm 6 nam và 4 nữ. Trong 6 bạn nam có An, trong 4 bạn nữ có Bình. Xếp 10 bạn trên ngồi vào 10 ghế trên một hàng ngang (10 ghế được đánh số từ 1 đến 10 từ trái qua phải). Có bao nhiêu cách sắp xếp thỏa mãn giữa 2 bạn nữ gần nhau có 2 bạn nam đồng thời An không ngồi cạnh Bình
Một tổ có 10 học sinh trong đó có An, Bình, Chi, Dung và Hương. Có bao nhiêu cách xếp 10 bạn đó vào 10 ghế sắp thành hàng ngang sao cho An, Bình ngồi cạnh nhau và Chi, Dung, Hương cũng ngồi cạnh nhau ?
Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:
a. Họ ngồi chỗ nào cũng được?
b. Nam ngồi kề nhau, nữ ngồi kề nhau?
c. Nam và nữ ngồi xen kẻ nhau?
d. Có 2 người luôn ngồi cạch nhau?
Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách:
a. Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa
b. Vào 5 ghế chung quanh một bàn tròm, nếu không có sự phân biệt giữa các ghế này
Câu 3: Có bao nhiêu cách sắp xếp chỗ ngồi 6 người ngồi vào một dãy 6 ghế hàng ngang nếu:
a. Có 3 người trong số đó muốn ngồi kề nhau
b. Có 2 người trong số đó không muốn ngồi kề nhau
Câu 4: Từ 5 bông vang, 3 bông trắng và 4 bông đỏ( các bông hoa xem như đôi một khác nhau ), ta chọn ra một bó gồm 7 bông:
a. Có bao nhiêu cách chọn ra bó hoa trong đó có đúng một bông đỏ
b. Có bao nhiêu cách chọn ra bó hoa trong đó có ít nhất 3 bông đỏ
c. Có bao nhiêu cách chọn ra bó hoa trong đó có mỗi màu có ít nhất 2 bông
Xếp 6 người A, B, C, D, E, F vào một ghế dài.Hỏi có bao nhiêu cách sắp xếp sao cho A và F ngồi ở hai đầu ghế
A. 48
B. 42
C. 46
D. 50
a: Số cách xếp A, F ngồi ở hai ghế đầu là : 2!=2 cách.
Số cách xếp B;C;D;E vào bốn ghế còn lại là hoán vị của 4 phần tử nên có 4!=24 cách.
Số cách xếp thỏa yêu cầu bài toán: 2.24=48 cách.
Chọn A.
Số cách sắp xếp 6 học sinh ngồi vào 6 trong 10 ghế trên một hàng ngang là:
A. 6 10
B. 6 !
C. A 10 6
D. C 10 6
Đáp án C
Phương pháp:
Sử dụng các quy tắc đếm cơ bản.
Cách giải:
Vì có 10 ghế nên bạn thứ nhất có 10 cách xếp.
Bạn thứ hai có 9 cách xếp.
Bạn thứ ba có 8 cách xếp.
Bạn thứ tư có 7 cách xếp.
Bạn thứ năm có 6 cách xếp.
Bạn thứ sáu có 5 cách xếp.
Như vậy có: 10.9.8.7.6.5 = A 10 6 cách xếp