Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vuong Trinh Nhat
Xem chi tiết
Đào Hải Đăng
Xem chi tiết
Minh Hiền
15 tháng 9 2015 lúc 8:09

(a-b)3=a3-3a2b+3ab2-b3 (1)

-(b-a)3=-(b3-3b2a+3ba2-a3)=-b3+3ab2-3a2b+a3=a3-3a2b+3ab2-b3 (2)

từ (1) và (2) => VT=VP => đpcm.

(-a-b)2=[(-a)+(-b)]2=(-a)2+2.(-a).(-b)+(-b)2=a2+2ab+b2=(a+b)2

=> VT=VP => đpcm.

Phương Phạm
Xem chi tiết
Nao Tomori
5 tháng 7 2016 lúc 12:52

a/ -(b-a)^3= -(b^3-3b^2a+3ba^2-a^3)

              = -b^3+3ab^2a-3ba^2+a^3

             = (a-b)^3

b/ tương tự ta dùng hằng đẳng thức để chứng minh

Đinh Thùy Linh
5 tháng 7 2016 lúc 12:55

a) a - b = - (b - a) = (-1)*(b - a)

=> (a - b)3 = [(-1)*(b - a)]3 = (-1)3 * (b - a)3 = -(b - a)3

b) -(a + b) = (- a - b)

=> (-1)2 * (a + b)2 = (-a - b)2

=> (-a -b)2 = (a + b)2

EdogawaConan
Xem chi tiết
Nguyễn Thị Bích Ngọc
9 tháng 7 2019 lúc 18:50

a) (a-b)^3=-(b-a)^3

\(Taco:-\left(b-a\right)^3\)

=\(-\left(b-a\right)\left(b-a\right)\left(b-a\right)\)

\(=\left(a-b\right)\left(b-a\right)\left(b-a\right)\)

\(=-\left(a-b\right)\left(a-b\right)\left(b-a\right)\)

\(=\left(a-b\right)\left(a-b\right)\left(a-b\right)=\left(a-b\right)^3\)

Nguyễn Thị Bích Ngọc
9 tháng 7 2019 lúc 18:51

\(\left(-a-b\right)^2=\left(-a-b\right)\left(-a-b\right)\)

\(=-\left(a+b\right)\left(-a-b\right)\)

\(=\left(a+b\right)\left(a+b\right)\)

\(=\left(a+b\right)^2\)

\(a,\left(a-b\right)^3=-\left(b-a\right)^3\)

\(=-\left(b-a\right)\left(b-a\right)\left(b-a\right)\)

\(=\left(a-b\right)\left(b-a\right)\left(b-a\right)\)

\(=-\left(a-b\right)\left(a-b\right)\left(b-a\right)\)

\(=\left(a-b\right)\left(a-b\right)\left(a-b\right)\)

\(=\left(a-b\right)^3\)

\(b,\left(-a-b\right)^2=\left(-a-b\right)\left(-a-b\right)\)

\(=-\left(a+b\right)\left(-a-b\right)\)

\(=\left(a+b\right)\left(a+b\right)\)

\(=\left(a+b\right)^2\)

Tran thuy quynh
Xem chi tiết
Hưng Lê
Xem chi tiết
Capheny Bản Quyền
27 tháng 8 2020 lúc 15:50

\(VT=\left(a-b\right)\left(a^2+ab+b^2\right)+ab\left(a-b\right)\)     

\(=\left(a-b\right)\left(a^2+ab+b^2+ab\right)\)             

\(=\left(a-b\right)\left(a^2+2ab+b^2\right)\)    

\(=\left(a-b\right)\left(a+b\right)^2\)              

\(=VP\left(đpcm\right)\)         

Khách vãng lai đã xóa
Nobi Nobita
27 tháng 8 2020 lúc 15:51

Ta có: \(a^3-b^3+ab\left(a-b\right)=\left(a-b\right)\left(a^2+ab+b^2\right)+ab\left(a-b\right)\)

\(=\left(a-b\right)\left(a^2+ab+b^2+ab\right)=\left(a-b\right)\left(a^2+2ab+b^2\right)\)

\(=\left(a-b\right)\left(a+b\right)^2\)( đpcm )

Khách vãng lai đã xóa
Phạm Nguyễn Hà Chi
27 tháng 8 2020 lúc 15:54

Ta có:

VT=a3-b3+ab(a-b)

VT=a3-b3+a2b-ab2

VT=(a3+a2b)-(b3+ab2)

VT=a2(a+b)-b2(b+a)

VT=(a+b)(a2-b2)

VT=(a+b)(a-b)(a+b)

VT=(a-b)(a+b)2=VP

Khách vãng lai đã xóa
Duyên
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
6 tháng 6 2020 lúc 20:43

a) Biến đổi VT . Mẫu chung là ( a + 2b )( a - 2b )

\(VT=\frac{a+2b-6b-2\left(a-2b\right)}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 1 )

Biến đổi VP 

\(-\frac{1}{2a}\left(\frac{a^2+4b^2}{a^2-4b^2}+1\right)=-\frac{1}{2a}\cdot\frac{a^2+4b^2+a^2-4b^2}{a^2-4b^2}\)

\(=-\frac{1}{2a}\cdot\frac{2a^2}{a^2-4b^2}=-\frac{a}{a^2-4b^2}\)( 2 )

Từ ( 1 ) và ( 2 ) => VT = VP ( đpcm )

b) \(a^3+b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)^3\)

<=> \(b^3+\left(\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right)^3=\left(\frac{a\left(a^3+2b^3\right)}{a^3-b^3}\right)-a^3\)( * )

Biến đổi VT của ( * ) ta có :

\(VT=\left[b+\frac{b\left(2a^3+b^3\right)}{a^3-b^3}\right]\left[b^2-\frac{b^2\left(2a^3+b^3\right)}{a^3-b^3}+\frac{b^2\left(2a^3+b^3\right)^2}{\left(a^3-b^3\right)^2}\right]\)

\(=\frac{3a^3b}{a^3-b^3}\cdot\frac{3a^6b^2+3a^3b^5+3b^8}{\left(a^3-b^3\right)^2}\)

\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 1 )

\(VP=\left[\frac{a\left(a^3+2b^3\right)}{a^3-b^3}-a\right]\left[\frac{a^2\left(a^3+2b^3\right)^2}{\left(a^3-b^3\right)^2}+\frac{a^2\left(a^3+2b^3\right)}{a^3-b^3}+a^2\right]\)

\(=\frac{3ab^3}{a^3-b^3}\cdot\frac{3a^8+3a^5b^3+3a^2b^6}{\left(a^3-b^3\right)^2}\)

\(=\frac{9a^3b^3}{\left(a^3-b^3\right)^3}\left(a^6+a^3b^3+b^6\right)\)( 2 )

Từ ( 1 ) và ( 2 ) => VT = VP => ( * ) đúng 

=> Hằng đẳng thức đúng 

Khách vãng lai đã xóa
Ank Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2023 lúc 21:43

(a-b)^2=(a-b)(a-b)=a^2-ab-ab+b^2=a^2-2ba+b^2

(a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2

(a+3)^3=(a+b)^2*(a+b)

=(a^2+2ab+b^2)(a+b)

=a^3+a^2b+2a^2b+2ab^2+b^2a+b^3

=a^3+3a^2b+3ab^2+b^3

Lê Kim Nhi
Xem chi tiết
Nguyễn Ngọc Vy
9 tháng 6 2017 lúc 15:46

\(\left(a+b\right)^3-3ab\left(a+b\right)=a^3+b^3+3a^2b+3ab^2-3a^2b-3ab^2=a^3+b^3\)

Lê Kim Nhi
9 tháng 6 2017 lúc 15:49

Không có được CM ngược lại bạn ạ

Nguyễn Ngọc Vy
11 tháng 6 2017 lúc 12:37

\(a^3+b^3=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2=\left(a+b\right)^3-3ab\left(a+b\right)\)