Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn hữu nhật
Xem chi tiết
Trần Thanh Phương
22 tháng 11 2018 lúc 19:51

+) chia hết cho 2 :

Dễ thấy tất cả các hạng tử của 2 đều chia hết cho 2

=> A chia hết cho 2

+) chia hết cho 3 :

A = 2 + 22 + ... + 299 + 2100

A = ( 2 + 22 ) + ... + ( 299 + 2100 )

A = 2 ( 1 + 2 ) + ... + 299 ( 1 + 2 )

A = 2 . 3 + ... + 299 . 3

A = 3 . ( 2 + ... + 299 ) chia hết cho 3

+) chia hết cho 15 : tương tự 

Gợi ý : nhóm 4 số một

+) chia hết cho 31 : tương tự

Gợi ý : nhóm 5 số một

nguyen thi yen nhi
Xem chi tiết
Nguyễn Minh Công
Xem chi tiết
Nhóc_Siêu Phàm
12 tháng 12 2017 lúc 23:07

chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7 
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100) 
A = 2 + 7.2^2 +..+ 7.2^98 => A chia 7 dư 2 

Phạm Tuấn Đạt
12 tháng 12 2017 lúc 23:09

chia thành từng bộ ba thì tổng của 99 số hạng sau chia hết cho 7 
A = 2 + (2^2+2^3+2^4) +..+ (2^98+2^99+2^100) 
A = 2 + 7.2^2 +..+ 7.2^98 => A chia 7 dư 2 

Nguyễn Hoàng Yến Nguyên
Xem chi tiết
Hoshiko Terumi
Xem chi tiết
Trần Thanh Phương
18 tháng 11 2018 lúc 20:11


 

\(A=\left(2+2^2\right)+...+\left(2^{99}+2^{100}\right)\)

\(A=2\cdot\left(1+2\right)+...+2^{99}\cdot\left(1+2\right)\)

\(A=2\cdot3+...+2^{99}\cdot3\)

\(A=3\cdot\left(2+...+2^{99}\right)⋮3\left(đpcm\right)\)

2 ý kia tương tự

Nguyễn Minh Vũ
18 tháng 11 2018 lúc 20:13

Giải:

Đặt S=(2+2^2+2^3+...+2^100)

=2.(1+2+2^2+2^3+2^4)+2^6.(1+2+2^2+2^3+2^4)+...+(1+2+2^2+2^3+2^4).296

=2.31+26.31+...+296.31

=31.(2+26+...+296)\(⋮\)31

BÌNH HÒA QUANG
18 tháng 11 2018 lúc 20:16

Ta có :

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

=> \(A=(2+2^2)+(2^3+2^4)+...+(2^{99}+2^{100})\)

=> \(A=2(1+2)+2^3(1+2)+...+2^{99}(1+2)\)

=> \(A=2.3+2^3.3+...+2^{99}.3\)

=> \(A=(2+2^3+...+2^{99}).3\)chia hết cho 3             ( 1 )

Ta lại có :

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

=> \(A=2(1+2+2^2+2^3+...+2^{98}+2^{99})\)chia hết cho 2       ( 2 )

Từ ( 1 ) và ( 2 ) ta có :

A chia hết cho 2 . 3 hay A chia hết cho 6

Ta có :

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

=> ​\(A=\left(2+2^2+2^3+2^4+2^5\right)+....\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

=> \(A=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

=> \(A=2.31+...+2^{96}.31\)

=> \(A=\left(2+...+2^{96}\right)31\)chia hết cho 31

Khánh Ngọc
Xem chi tiết
Khánh Ngọc
15 tháng 12 2021 lúc 16:50

cứu

gấp 

Nguyễn Hoàng Minh
15 tháng 12 2021 lúc 16:50

\(a,2A=2+2^2+2^3+...+2^{100}\\ \Rightarrow2A-A=2+2^2+...+2^{100}-1-2-...-2^{99}\\ \Rightarrow A=2^{100}-1\\ b,A=\left(1+2\right)+2^2\left(1+2\right)+...+2^{98}\left(1+2\right)\\ A=\left(1+2\right)\left(1+2^2+...+2^{98}\right)=3\left(1+2^2+...+2^{98}\right)⋮3\\ c,A=\left(1+2+2^2+2^3\right)+...+2^{96}\left(1+2+2^2+2^3\right)\\ A=\left(1+2+2^2+2^3\right)\left(1+...+2^{96}\right)=15\left(1+...+2^{96}\right)⋮15\)

Yến Nhi
Xem chi tiết
Yến Nhi
20 tháng 12 2022 lúc 22:00

giúp t với ạ.sáng mai t thi r

 

Minh Đăng
Xem chi tiết
Nguyễn Thị Thương Hoài
24 tháng 12 2022 lúc 22:29

Phương pháp giải dạng tống quát : 

Muốn chứng minh A \(⋮̸\) b  ta cần biến đổi A = kb + r ( k \(\in\) Z; r \(⋮̸\) b)

Áp dụng :

A =  1 + 2  + 22 + 23 +....+299

A =  1 + ( 2+22 + 23 ) + .....+ ( 297 + 298 + 299)

A = 1 + 14 +.......+ 296.( 2 + 22 + 23)

A = 1 + 14. ( 20 +....+296)

vì 14 \(⋮\) 7  => 14.( 20 +.....+296\(⋮\) 7

                                             1  \(⋮̸\) 7

Cộng vế với vế ta được : 1 + 14.(20 + ....296\(⋮̸\) 7

Hay A = 1 + 2 + 22 + 23 + 24 +......299 \(⋮̸\) 7 (đpcm)

Đặng Anh Tuấn
Xem chi tiết
๖Fly༉Donutღღ
1 tháng 9 2017 lúc 20:32

mk biết làm câu a thôi :(

Đặng Anh Tuấn
1 tháng 9 2017 lúc 20:38

mình cũng chỉ làm được câu a thôi. hì hì