Cho dãy số u n : u 1 = 5 u n + 1 = u n + n . Số 20 là số hạng thứ mấy trong dãy?
A. 5
B. 6
C. 9
D. 10
Cho dãy số u ( n ) xác định bởi u ( 1 ) = 1 ; u ( m + n ) = u ( m ) + u ( n ) + m n , ∀ m , n ∈ ℕ * . Tính u ( 2017 )
A. 2035153
B. 2035154
C. 2035155
D. 2035156
Chọn A
Phương pháp: Tìm công thức số hạng tổng quát
Cách giải: Ta có:
u ( 1 ) = 1
u ( 2 ) = u ( 1 ) + u ( 1 ) = 2 u ( 1 ) + 1
u ( 3 ) = u ( 2 ) + u ( 1 ) = 3 u ( 1 ) + 1 + 2
u ( 4 ) = u ( 3 ) + u ( 1 ) = 4 u ( 1 ) + 1 + 2 + 3
. . .
u ( 2017 ) = u ( 2016 ) + u ( 1 ) = 2017 u ( 1 ) + 1 + 2 + 3 . . . + 2016
⇒ u ( 2017 ) = 1 + 2 + 3 . . . + 2016 + 2017 = 2035153
Cho dãy số U 1 , U2 . . . Un
Dãy số trên có là dãy số cách đều không nếu Un = n2 + n
( Với mọi n lớn hơn hoặc bằng 1 )
Đố thánh nào làm được
Dãy số Un được gọi là dãy số cách đều khi : Un+1 - Un = d (Hằng số - Không phụ thuộc vào n) Nếu d.> 0 thì dãy số gọi là dãy số tăng, nếu d< 0 thì dãy số là dãy giảm.
Dãy số mà Un = n2 + n với \(\forall n\in N,n\ge1\).Ta xét hiệu Un+1 - Un = (n +1)2 + (n + 1) - (n2 + n) = 2n + 2 Không phải là hằng số (Vì hiệu này còn chứa n) Vậy dãy số đã cho không phải là dãy số cách đều.
1. Tìm 20 số hạng đầu của dãy số (un) cho bởi:
\(\hept{\begin{cases}u_1=1\\u_{n+1}=\frac{u_{n+2}}{u_{n+1}}\end{cases}},n\inℕ^∗\)
2. Cho dãy số: u1=2; u2=3; u3=18; u4= 67; u5=184
Tính u10; u11; u12; u13; u14; u15
Cho dãy số:
\(u:{\mathbb{N}^*} \to \mathbb{R}\)
\(n \mapsto {u_n} = {n^3}\)
a) Hãy cho biết dãy số trên là hữu hạn hay vô hạn.
b) Viết năm số hạng đầu tiên của dãy số đã cho.
a) Vì hàm số \(u\) xác định trên tập hợp các số nguyên dương
\(\mathbb{N}^{\text{∗
}}\) nên nó là một dãy số vô hạn.
b) Ta có:
\(u_1=1^3=1\\ u_2=2^3=8\\ u_3=3^3=27\\ u_4=4^3=64\\ u_5=5^3=125.\)
a: Dáy số này là vô hạng
b: 1;8;27;64;125
cho dãy số U0 =2, U1 =10 ;Un+1 =10Un - Un-1 . Tính U9
cho dãy số \(\frac{1}{\sqrt{5}}\left[\left(\frac{1+\sqrt{5}}{2}\right)^n\left(\frac{1-\sqrt{5}}{2}\right)^n\right]\) với n = 1;2;3....
tìm 10 số hạng đầu tiên của dãy
lập công thức truy hồi Un+2 theo Un+1 và Un
lập quy trình ấn phím Un+2 và U25 đến U30
Cho dãy số (Un) xác định bởi U1=-3 và U(n+1)=Un+ n^2 -3n +4, mọi n thuộc N*. Số 1391 là số hạng thứ mấy của dãy ?
Cho dãy số 4,7,12,19.Tìm số hạng thứ 62 của dãy số?
Cho mình xin cách giải cụ thể nhé!