1/(x+2001)(x+2002)+1/(x+2002)(x+2003)+..........+1/(x+2006)(x+2007) =7/8
1/(x+2000)(x+2001) + 1/(x+2001)(x+2002) +1/(x+2002)(x+2003) +........+ 1/(x+2006)(x+2007)= 7/8
1/(x+2001)(x+2002) +1/(x+2002)(x+2003)+(1/(x+2003)(x+2004)+.......+ 1/(x+2006)(x+2007) =7/8
giải giúp mình chi tiết nha.
\(\frac{1}{\left(x+2000\right)\left(x+2001\right)}+\frac{1}{\left(x+2001\right)\left(x+2002\right)}+...+\frac{1}{\left(x+2006\right)\left(x+2007\right)}=\frac{7}{8}\)
\(\frac{1}{x+2000}-\frac{1}{x+2007}=\frac{7}{8}\)
\(\frac{8\left(x+2007\right)}{8\left(x+2000\right)\left(x+2007\right)}-\frac{8\left(x+2000\right)}{8\left(x+2000\right)\left(x+2007\right)}=\frac{7\left(x+2000\right)\left(x+2007\right)}{8\left(x+2000\right)\left(x+2007\right)}\)
\(8x+8.2007-8x+8.2000=7\left(x^2+4007x+2000.2007\right)\)
\(8.7-7\left(x^2+4007x+2000.2007\right)=0\)
\(7\left(8-x^2-4007x-2000.2007\right)=0\)
\(8-x^2-4007x-2000.2007=0\)
\(x^2+4007x+4013992=0\)
\(\left(x^2+2008x\right)+\left(1999x+4013992\right)=0\)
\(\left(x+2008\right)\left(x+1999\right)=0\)
\(\hept{\begin{cases}x=-2008\\x=-1999\end{cases}}\)
\(\frac{1}{\left(x+2000\right)\left(x+2001\right)}+\frac{1}{\left(x+2001\right)\left(x+2002\right)}+\frac{1}{\left(x+2006\right)\left(x+2007\right)}=\frac{7}{8}\)
\(\frac{1}{x+2000}-\frac{1}{x+2001}+\frac{1}{x+2001}-\frac{1}{x+2002}+...+\frac{1}{x+2006}-\frac{1}{x+2007}=\frac{7}{8}\)
\(\frac{1}{x+2000}-\frac{1}{x+2007}=\frac{7}{8}\)
phần đầu mk thiếu điều kiện,bn tự bổ sung nha
1 / giải phương trình sau:
\(\frac{1}{\left(x+2000\right).\left(x+2001\right)}+\frac{1}{\left(x+2001\right).\left(x+2002\right)}...\frac{1}{\left(x+2006\right)\left(x+2007\right)}=\frac{7}{8}\)
\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
=> \(\frac{1}{x+2000}-\frac{1}{x+2001}+\frac{1}{x+2001}-\frac{1}{x+2002}+....+\frac{1}{x+2006}-\frac{1}{x+2007}=\frac{7}{8}\)
<=> \(\frac{1}{x+2000}-\frac{1}{x+2007}=\frac{7}{8}\)
<=> \(\frac{7}{\left(x+2000\right)\left(x+2007\right)}=\frac{7}{8}\Leftrightarrow\left(x+2000\right)\left(x+2007\right)=8\)
=> x = -1999 hoặc x = - 2008
Kết quả dãy tính sau tận cùng bằng chữ số nào ?
2001 x 2002 x 2003 x 2004 + 2005 x 2006 x 2007 x 2008 x 2009
2001 x 2002 x 2003 x 2004 có tận cùng là 4
2005 x 2006 x 2007 x 2008 x 2009 có tận cùng là 0
=> 2001 x 2002 x 2003 x 2004 + 2005 x 2006 x 2007 x 2008 x 2009 có tận cùng là 4 + 0 = 4
2001 x 2002 x 2003 x 2004 + 2005 x 2006 x 2007 x 2008 x 2009
= .....1 x ....2 x ...3 x .....4 + .....5 x ....6 x ....7 x ....8 x....9
= ...2 x...3 x,...4 + ....0 x .....7 x .....8x ....9
= ......6x ....4 + ....0 x ......9
= .....4 + ......0
= ........4
Vậy : 2001 x 2002 x 2003 x 2004 + 2005 x 2006 x 2007 x 2008 x 2009 có chữ số tận cùng là 4.
vì 1 x 2 x 3 x 4 có tận cùng là 4
5 x 6 x 7 x 8 x 9 có tận cùng là 0
nên 2001 x 2002 x 2003 x 2004 + 2005 x 2006 x 2007 x 2008 x 2009 có tận cùng là chữ số 4
2001 x 2002 x 2003 x 2004 + 2005 x 2006 x 2007 x 2008 x 2009
kết quả dãy tính sau tận cùng bằng số nào ?
2001 x 2002 x 2003 x 2004 + 2005 x 2006 x 2007 x 2008 x 2009 kết quả tận cùng hình như là 4 đó
So sánh : a) A = 2001 + 2002 / 2002 + 2003 và B = 2001/2002 + 2002/ 2003
b) A = 2006^2006 + 1/2006^2007 +1 và B = 2006^2005 + 1/2006^2006 + 1
c ) A = 1999^1999 + 1/1999^2000 + 1 và B = 1999^1989 + 1/1999^2009 + 1
B = \(\frac{2001}{2002}+\frac{2002}{2003}\)
có: \(\frac{2000}{2001}>\frac{2000}{2001}+2002\)
\(\frac{2001}{2002}>\frac{2001}{2001}+2002\)
Vậy A>B
Tìm x :
\(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}=\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-3}{2006}\)
\(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}=\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-3}{2006}\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}+1\right)+\left(\dfrac{x-7}{2002}+1\right)+\left(\dfrac{x-6}{2003}+1\right)=\left(\dfrac{x-5}{2004}+1\right)+\left(\dfrac{x-4}{2005}+1\right)+\left(\dfrac{x-3}{2006}+1\right)\)
\(\Leftrightarrow\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}-\dfrac{x-2009}{2004}-\dfrac{x-2009}{2005}-\dfrac{x-2009}{2006}=0\)
\(\Leftrightarrow\left(x-2009\right).\left(\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}-\dfrac{1}{2006}\right)=0\)
\(\text{Mà}:\left(\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}-\dfrac{1}{2006}\right)\ne0\)
\(\Rightarrow x-2009=0\Rightarrow x=2009\)
\(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}=\dfrac{x-5}{2004}+\dfrac{x-4}{4}+\dfrac{x-5}{2006}\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}\right)-3=\left(\dfrac{x-5}{2004}+\dfrac{x-4}{4}+\dfrac{x-5}{2006}\right)-3\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}\right)-\left(1+1+1\right)=\left(\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-5}{2006}\right)-\left(1+1+1\right)\)
\(\Leftrightarrow\dfrac{x-8}{2001}+\dfrac{x-7}{2002}+\dfrac{x-6}{2003}-1-1-1=\dfrac{x-5}{2004}+\dfrac{x-4}{2005}+\dfrac{x-5}{2006}-1-1-1\)
\(\Leftrightarrow\left(\dfrac{x-8}{2001}-1\right)+\left(\dfrac{x-7}{2002}-1\right)+\left(\dfrac{x-6}{2003}-1\right)=\left(\dfrac{x-5}{2004}-1\right)+\left(\dfrac{x-4}{2005}-1\right)+\left(\dfrac{x-5}{2006}-1\right)\)
\(\)\(\Leftrightarrow\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}=\dfrac{x-2009}{2004}+\dfrac{x-2009}{2006}+\dfrac{x-2009}{2006}\)
\(\Leftrightarrow\left(\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}\right)-\left(\dfrac{x-2009}{2004}+\dfrac{x-2009}{2006}+\dfrac{x-2009}{2006}\right)=0\)
\(\Leftrightarrow\dfrac{x-2009}{2001}+\dfrac{x-2009}{2002}+\dfrac{x-2009}{2003}-\dfrac{x-2009}{2004}-\dfrac{x-2009}{2006}-\dfrac{x-2009}{2006}=0\)
\(\Leftrightarrow\left(x-2009\right)\left(\dfrac{1}{2001}+\dfrac{1}{2002}+\dfrac{1}{2003}-\dfrac{1}{2004}-\dfrac{1}{2005}-\dfrac{1}{2006}\right)=0\)
\(\Leftrightarrow x-2009=0\)
\(\Leftrightarrow x=2009\)
Vậy \(x=2009\)
Tính nhanh :
a) 2003 x 14 + 1988 + 2001 + 2002
2002 + 2002 x 503 + 504 x 2002
b) 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128.
a ) \(\frac{2003\times14+1988+2001+2002}{2002+2002\times503+504\times2002}\)
= \(\frac{\left(2002+1\right)\times14+1988+2001\times2002}{2002\times\left(1+503+504\right)}\)
= \(\frac{2002\times14+14+1998+2001\times2002}{2002\times1008}\)
= \(\frac{2002\times14+2002+2001\times2002}{2002\times1008}\)
= \(\frac{2002\times\left(14+1+2001\right)}{2002\times1008}\)
= \(\frac{2016}{1008}\)
= 2
b ) Đặt A = 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128
=> 2A = 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64
=> 2A - A = ( 1/2 + 1/4 + 1/8 + 1/16 + 1/32 + 1/64 ) - ( 1/4 + 1/8 + 1/16 + 1/32 + 1/64 + 1/128 )
=> A = 1/2 - 1/128
A = 63/128
\(b,\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+..+\frac{1}{128}\)
\(=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}=A\)
\(\Rightarrow2A=\frac{1}{2}+\frac{1}{2^2}+..+\frac{1}{2^6}\)
\(\Rightarrow2A-A=\left(\frac{1}{2}+\frac{1}{2^2}+..+\frac{1}{2^6}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\right)\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{2^7}\)