Chứng minh rằng với mọi số nguyên dương n thì : A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1
Chia hết cho 6.
Với mỗi số nguyên dương \(n\), đặt \(s_{n} = (2 - \sqrt{3})^n + (2 + \sqrt{3})^n\)
a) Chứng minh rằng: \(s_{n+2} = 4s_{n+1} - s_{n}\)
b) Chứng minh rằng sn là số nguyên với mọi số nguyên dương n và tìm số dư của s2018 khi chia cho 3.
c) Chứng minh rằng \([(2 + \sqrt{3})^n] = s_{n} - 1\) với mọi số nguyên dương \(n\), trong đó kí hiệu [x] là phần nguyên của số thực \(x\).
thì sao? sao ko thấy câu hỏi?
Chứng minh rằng với mọi số nguyên dương n thì:
\(3^{n+2} - 2 ^{n+2} + 3 ^{n} - 2^{n}\) chia hết cho 10
3n+2 -2n+2 +3n -2n
=3n .32 -2n .22 +3n -22
=3n(9+)-2n(4-1)
Vì 3n .10 ⋮10
=> 3n .10- 2n .3⋮10
=>3n +2 -2n+2 +3n -2n ⋮10
chứng minh rằng :với mọi số nguyên dương n thì : (3^n+2)-(2^n+2) + ( 3^n) -(2^n) chia hết cho 10
=>(3^n+2)+(3^n)-(2^n+2)-(2^n)=3^n((3^2)+1)-2^n((2^2)+1)=(3^n)*10-(2^n)*5=(3^n)*10-(2^n-1)*5*2=(3^n)*10-(2^n-1)*10=10*((3^n)-(2^n-1) chia hết cho 10
=>(3^n+2)-(2^n+2)+(3^n)-(2^n)chia hết cho 10
Chứng minh rằng với mọi số nguyên dương n thì:
A = 3n+3 + 3n+1 + 2n+2 + 2n+1 chia hết cho 6
Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3
=> ĐPCM;
chứng minh rằng :với mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n⋮10\)
Có: 3^n+2-2^n+2-3^n-2^n
=3^n.9-2^n.4+3^n-2^n
=3^n.10-2^n.5
Mà: +,10 chia hết cho 10
=> 3^n.10 chia hết cho 10. (1)
+, n là số nguyên dương => n lớn hơn hoặc =1
=> 2^n.5=2.2..2.5 (n chữ số 2)
=(2.5).2.2...2 (n-1 chữ số 2)
=10.2.2.2..2
=> Chia hết cho 10 (tại vì có 10 chia hết cho 10) (2)
Từ 1 và 2 => 3^n.10-2^n.5 chia hết cho 10 (Cả số bị trừ và số trừ đều chia hết cho 10-> Hiệu cũng sẽ chia hết cho 10)
=> ĐPCM.
chứng minh rằng với mọi số nguyên dương thì S=(n+1)(n+2)(n+3)..........(n+n) chia hết cho 2^n
Chứng minh rằng: Với mọi số nguyên dương n thì:
3^n+2 - 2^n+2 + 3^n - 2^n chia hết cho 10
( Cần cực gấp ! )
Chứng minh rằng với mọi số nguyên dương n thì :
3^(n+2) - 2^(n+2) + 3^n - 2^n