Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 2 2017 lúc 18:20

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
30 tháng 1 2018 lúc 2:08

c. x = 3, x = -3 có là nghiệm của N(x) vì N(3) = N(-3) = 0 (0.5 điểm)

Phạm Trịnh Trà My
Xem chi tiết
Yen Nhi
25 tháng 6 2021 lúc 21:02

\(a)\)

\(x^2=2y^2-8y+3\)

\(\rightarrow x^2=2\left(y^2+4y+4\right)-5\)

\(\rightarrow x^2+5=2\left(y+2\right)^2\)

\(\text{Ta có:}\)\(2\left(y+2\right)⋮2\)

\(\rightarrow\text{​Một số chính phương chia 5 có số dư là: 0; 1; 4}\)

\(\rightarrow2n^2⋮5\)\(\text{có số dư là: 0; 2; 3 }\)

\(\text{Ta có:}x^2+5⋮5\left(dư5\right)\)

\(\rightarrow\text{Phương trình không có nghiệm nguyên}\)

\(b)\)

\(x^5-5x^3+4x=24\left(5y+1\right)\)

\(\rightarrow x\left(x+1\right)\left(x-1\right)\left(x+2\right)\left(x-2\right)=120y+24\)

\(\text{VT là tích của 5 số nguyện liên tiếp}⋮5\)

\(\text{VP không chia hết cho 5}\)

\(\rightarrow\text{Phương trình không có nghiệm nguyên }\)

Khách vãng lai đã xóa
Trần Thị Thanh Thư
Xem chi tiết
Trần Thị Thanh Thư
Xem chi tiết
Uzumaki naruto
9 tháng 1 2016 lúc 21:18

ai giup vs 

Cho x,y là hai số thoả mãn 2(x2+y2)=(x-y)2 Khi đó ta có hệ thức biểu diễn mối quan hệ giữa x,y là   x=....y
giải chi tiết nha

vũ văn đạt
10 tháng 1 2016 lúc 7:46

đáp án là 43 ai thông minh sẽ tick câu trả lời này

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 9 2017 lúc 4:23

Hàm số f(x) = 3 x 5  + 15x - 8 là hàm số liên tục và có đạo hàm trên R.

Vì f(0) = -8 < 0, f(1) = 10 > 0 nên tồn tại một số  x 0   ∈ (0;1) sao cho f( x 0 ) = 0, tức là phương trình f(x) = 0 có nghiệm.

Mặt khác, ta có y' = 15 x 4  + 5 > 0, ∀ x  ∈  R nên hàm số đã cho luôn đồng biến. Vậy phương trình đó chỉ có một nghiệm.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 2 2019 lúc 11:27

Hàm số f(x) = 3 x 5  + 15x - 8 là hàm số liên tục và có đạo hàm trên R.

Vì f(0) = -8 < 0, f(1) = 10 > 0 nên tồn tại một số x0 ∈ (0;1) sao cho f(x0) = 0, tức là phương trình f(x) = 0 có nghiệm.

Mặt khác, ta có y' = 15 x 4  + 5 > 0, ∀x ∈ R nên hàm số đã cho luôn đồng biến. Vậy phương trình đó chỉ có một nghiệm.

ThanhNghiem
Xem chi tiết

a.

\(x^3-7x+6=0\)

\(\Leftrightarrow x^3-3x^2+2x+3x^2-9x+6=0\)

\(\Leftrightarrow x\left(x^2-3x+2\right)+3\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x^2-x-2x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[x\left(x-1\right)-2\left(x-1\right)\right]\left(x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)

f.

\(x^4-4x^3+12x-9=0\)

\(\Leftrightarrow x^4-4x^3+3x^2-3x^2+12x-9=0\)

\(\Leftrightarrow x^2\left(x^2-4x+3\right)-3\left(x^2-4x+3\right)=0\)

\(\Leftrightarrow\left(x^2-4x+3\right)\left(x^2-3\right)=0\)

\(\Leftrightarrow\left(x^2-x-3x+3\right)\left(x^2-3\right)=0\)

\(\Leftrightarrow\left[x\left(x-1\right)-3\left(x-1\right)\right]\left(x^2-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)\left(x^2-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=3\\x=\pm\sqrt{3}\end{matrix}\right.\)

g.

\(x^5-5x^3+4x=0\)

\(\Leftrightarrow x\left(x^4-5x^2+4\right)=0\)

\(\Leftrightarrow x\left(x^4-x^2-4x^2+4\right)=0\)

\(\Leftrightarrow x\left[x^2\left(x^2-1\right)-4\left(x^2-1\right)\right]=0\)

\(\Leftrightarrow x\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm1\\x=\pm2\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 4 2017 lúc 16:18