Chứng minh rằng các phương trình sau k có nghiệm nguyên:
a) x^2 = 2y^2 -8y +3
b) x^5 -5x^3 +4x =24(5y +1)
CMR các phương trình sau k có nghiệm nguyên:
a) 19x^2+28y^2=2001
b) x^2=2y^2-8y+3
d) x^5-5x^3+4x=24(5y+1)
CMR các phương trình sau k có nghiệm nguyên:
a) 19x^2+28y^2=2001
b) x^2=2y^2-8y+3
d) x^5-5x^3+4x=24(5y+1)
Gi ải các phương trình sau
e) x3-7x+6=0
f) x4-4x3+12x-9=0
g)x5-5x3+4x=0
h) x4-4x3+3x2+4x-4=0
Giải các phương trình sau:
a, (9x2 - 4)(x + 1) = (3x +2)(x2 - 1)
b, (x - 1)2 - 1 + x2 = (1 - x)(x + 3)
c, (x2 - 1)(x + 2)(x - 3) = (x - 1)(x2 - 4)(x + 5)
d, x4 + x3 + x + 1 = 0
e, x3 - 7x + 6 = 0
f, x4 - 4x3 + 12x - 9 = 0
g, x5- 5x3 + 4x = 0
h, x4 - 4x3 + 3x2 + 4x - 4 = 0
giải phương trình sau:
a. (9x2-4)(x+1) = (3x+2) (x2-1)
b. (x-1)2-1+x2 = (1-x)(x+3)
c. (x2-1)(x+2)(x-3) = (x-1)(x2-4)(x+5)
d. x4+x3+x+1=0
e. x3-7x+6 = 0
f. x4-4x3+12x-9 = 0
g. x5-5x3+4x = 0
h. x4-4x3+3x2+4x-4 = 0
m.n jup vs
Chứng minh rằng phương trình sau không có nghiệm nguyên:
\(x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5=33\)
Cho phương trình m 2 + m − 6 x 2 = m − 2 m − 3 trong đó m là tham số.
a) Chứng minh:
i) Khi m = 2 phương trình có tập nghiệm là ℝ ;
ii) Khi m = -3 phương trình có tập nghiệm là ∅ .
b) Giải phương trình đã cho khi m = 5.
Bất phương trình 15 x - 2 4 > 1 + 3 x có nghiệm là:
A. x < 1
B. x < 2
C. x > 2
D. KQ khác