Cho hình phẳng (D) giới hạn bởi các đường y = ( x - 2 ) 2 và y = 4 . Tính thể tích của vật thể tròn xoay sinh ra bởi hình (D) khi nó quay xung quanh trục Oy
A. 219 π 2
B. 172 π 5
C. 113 π 2
D. 128 π 3
Cho hình phẳng giới hạn bởi đồ thị các hàm số y = x , đường thẳng y = 2 - x và trục hoành. Diện tích hình phẳng sinh bởi hình phẳng giới hạn bởi các đồ thị trên là
A. 7 6 .
B. 4 3 .
C. 5 6 .
D. 5 4 .
Tính thể tích hình khối do hình phẳng giới hạn bởi các đường y=\(x^{\dfrac{1}{2}}e^{\dfrac{x}{2}}\) y=0,x=1,x=4
Tính thể tích hình khối do hình phẳng giới hạn bởi các đường y= \(x\sqrt{ln\left(1+x^3\right)}\) : y=0 : x=1
1.
\(V=\pi \int ^4_1[x^{\frac{1}{2}}e^{\frac{x}{2}}]^2dx=\pi \int ^4_1(xe^x)dx\)
\(=\pi \int ^4_1xd(e^x)=\pi (|^4_1xe^x-\int ^4_1e^xdx)\)
\(=\pi |^4_1(xe^x-e^x)=\pi (3e^4)=3\pi e^4\)
2.
\(V=\pi \int ^1_0(x\sqrt{\ln (x^3+1)})^2dx=\pi \int ^1_0x^2\ln (x^3+1)dx\)
\(=\frac{1}{3}\pi \int ^1_0\ln (x^3+1)d(x^3+1)\)
\(=\frac{1}{3}\pi \int ^2_1ln tdt=\frac{1}{3}\pi (|^2_1t\ln t-\int ^2_1td(\ln t))\)
\(=\frac{1}{3}\pi (|^2_1t\ln t-\int ^2_1dt)=\frac{1}{3}\pi |^2_1(t\ln t-t)=\frac{1}{3}\pi (2\ln 2-1)\)
Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = x − 1 x + 2 và các đường thẳng Δ : y = 2 , d : − 2 x − 4 (tham khảo hình bên). Tính diện tích hình phẳng (H)
A. 1 4 + 3 ln 2
B. 1 4
C. − 2 + 3 ln 3
D. − 5 4 + 3 ln 2
Đáp án D
Hoành độ giao điểm của (H) và (d) là nghiệm: x − 1 x + 2 = − 2 x − 4 ⇔ x = − 1 x = − 7 2
Hoành độ giao điểm của (d) và Δ là nghiệm: 2 = − 2 x − 4 ⇔ x = − 3
Hoành độ giao điểm của (H) và Δ là nghiệm: x − 1 x + 2 = 2 ⇔ x = − 5
Khi đó, diện tích hình phẳng cần tính là S = ∫ − 5 − 7 2 x − 1 x + 2 − 2 d x + ∫ − 7 2 − 3 − 2 x − 4 − 2 d x = − 5 4 + 3 ln 2
Cho hình phẳng (D) giới hạn bởi các đường y= x - 2 2 và y = 4. Tính thể tích của vật thể tròn xoay sinh ra bởi hình (D) khi nó quay xung quanh trục Ox
A. 118 π 5
B. 253 π 7
C. 112 π 3
D. 256 π 5
Cho hình phẳng (H) giới hạn bởi các đường y = xlnx , trục hoành, đường thẳng x = 1 2 . Tính diện tích hình phẳng (H).
A. 1 16 − 1 8 ln 2
B. 3 16 − 1 8 ln 2
C. 3 16 + 1 8 ln 2
D. 1 8 3 − ln 2
Đáp án B
Điều kiện: x > 0
Phương trình hoành độ giao điểm của đồ thị hàm số y=x.lnx và trục hoành là
Cho hình phẳng H giới hạn bởi các đường y = x ln x , trục hoành, đường thẳng x = 1 2 . Tính diện tích hình phẳng H .
A. 1 8 3 - ln 2
B. 3 16 - 1 8 ln 2
C. 3 16 + 1 8 ln 2
D. 1 16 - 1 8 ln 2
Đáp án B
Điều kiện: x > 0
Phương trình hoành độ giao điểm của đồ thị hàm số và trục hoành là
Cho hình phẳng (H) giới hạn bởi các đường y = x ln x , trục hoành, đường thẳng x = 1 2 . Tính diện tích hình phẳng (H).
Cho hình phẳng D giới hạn bởi đường cong y = 2 - sinx , trục hoành và các đường thẳng x=0, x = π 2 . Khối tròn xoay tạo thành D quay quanh trục hoành có thể tích V bằng:
A. π - 1 .
B. π 2 - 1 .
C. π ( π - 1 ) .
D. π 2 + 1 .
Diện tích hình phẳng được giới hạn bởi các đường y = x 3 + 3 x , y = - x và đường thẳng x = -2 là:
A. -12(dvdt).
B. 12(dvdt).
C. 4(dvdt).\
D. -4(dvdt).
Chọn B.
Phương trình hoành độ giao điểm của hai đồ thị hàm số y = x3 + 3x và y = -x là: x3 + 4x = 0 ⇔ x = 0
Ta có: x3 + 4x ≤ 0, ∀ x ∈ [-2;0].
Do đó: