So sánh: A = 98 99 + 1 98 89 + 1 và B = 98 98 + 1 98 88 + 1
So sánh :
C= \(\dfrac{98^{99}+1}{98^{89}+1}\) và D = \(\dfrac{98^{98}+1}{98^{88}+1}\)
\(C-D=\dfrac{\left(98^{99}+1\right)\left(98^{88}+1\right)-\left(98^{89}+1\right)\left(98^{98}+1\right)}{\left(98^{89}+1\right)\left(98^{88}+1\right)}\)
\(=\dfrac{98^{187}+98^{99}+98^{88}+1-98^{197}-98^{89}-98^{98}-1}{\left(98^{89}+1\right)\left(98^{88}+1\right)}\)
\(=\dfrac{98^{99}-98^{98}+98^{88}-98^{89}}{\left(98^{89}+1\right)\left(98^{88}+1\right)}=\dfrac{98^{98}\left(98-1\right)-98^{88}\left(98-1\right)}{\left(98^{89}+1\right)\left(98^{88}+1\right)}\)
\(=\dfrac{97.98^{98}-97.98^{88}}{\left(98^{89}+1\right)\left(98^{88}+1\right)}=\dfrac{97.98^{88}\left(98^{10}-1\right)}{\left(98^{89}+1\right)\left(98^{88}+1\right)}>0\)
\(\Rightarrow C>D\)
So sánh :
C=98^99+1/98^89+1
D=98^98+1/98^89+1
Giúp mình trình bày với
Dấu "/" lachia nhé
So sánh : C = 9899+1/9889+1
D = 9898+1/9888+1
So sánh các phân số sau:
9899+1/9889+1 và 9899+1/9888+1
\(A=\frac{98^{99}+1}{98^{89}+1}>\frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}=\frac{98\left(98^{98}+1\right)}{98\left(98^{88}+1\right)}=B\)
Vậy A>B
so sánh : C=98^99+1/98^89+1
D=98^98+1/98^88+1
\(C=\frac{98^{99}+1}{98^{89}+1}\)
\(D=\frac{98^{98}+1}{98^{88}+1}\)
\(C< \frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}=\frac{98^{98}\left(98+1\right)}{98^{88}\left(98+1\right)}\)
\(C< \frac{98^{98}}{98^{88}}=D\)
so sánh
\(\frac{98^{99}+1}{98^{89}+1}\)và \(\frac{-98^{98}-1}{-98^{88}-1}\)
\(A=\frac{-\left(98^{98}+1\right)}{-\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}\)
\(B=\frac{98^{99}+1}{98^{89}+1}\)
A-1=\(\frac{98^{98}-98^{88}}{98^{88}+1}=\frac{98^{88}.\left(98^{10}-1\right)}{98^{88}+1}\)
B-1=\(\frac{98^{99}-98^{89}}{98^{89}+1}=\frac{98^{89}.\left(98^{10}-1\right)}{98^{89}+1}\)
=>\(\frac{A-1}{B-1}=\frac{98^{88}.\left(98^{10}-1\right)}{98^{88}+1}.\frac{98^{89}+1}{98^{89}.\left(98^{10}-1\right)}=\frac{98^{89}+1}{98.\left(98^{88}+1\right)}=\frac{98^{89}+1}{98^{89}+98}< 1\)
->A-1<B-1
->A<B
So sánh : C = 9899+1/9889+1
D = 9889+1/9888+1
Làm ơn giúp mình đi! Mình xin đấy. Sắp hế giờ rồi
So sánh :C=98^99 +1/98^89 +1
vs
D=98^98 +1/98^88 +1
\(C=\frac{98^{99}+1}{98^{88}+1}\)\(D=\frac{98^{98}+1}{98^{98}+1}\)
Vì C>1 còn D=1 nên C>D
dung cho mih nha
so sánh \(C=\frac{^{98^{99}}+1}{98^{89}+1}\)và D=98^98+1/98^88+1
khẩn cấp nhé
Ta có:C=\(\frac{98^{99}+1}{98^{89}+1}\Rightarrow\frac{98^{99}+1}{98^{99}+10}=\frac{98^{99}+1}{98^{99}+1+9}=\frac{98^{99}+1}{1+9}\)
D\(\frac{98^{98}+1}{98^{88}+1}=\frac{98^{98}+1}{98^{98}+10}=\frac{98^{98}+1}{98^{98}+1+9}\frac{98^{98}+1}{1+9}\)
Vì\(\frac{98^{99}+1}{1+9}\)>\(\frac{98^{98}+1}{1+9}\)
=>C>D
A=10^99+1 / 10^89+1
B= 10^98+1 / 10^88+1
So sánh A và B
Tính chất nếu:
\(\dfrac{a}{b}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\)
Ta có:
\(A=\dfrac{10^{99}+1}{10^{89}+1}>\dfrac{10^{99}+1+9}{10^{89}+1+9}\)
\(A>\dfrac{10^{99}+10}{10^{89}+10}\)
\(A>\dfrac{10\cdot\left(10^{98}+1\right)}{10\cdot\left(10^{88}+1\right)}\)
\(A>\dfrac{10^{98}+1}{10^{88}+1}\)
\(A>B\)
\(A=\dfrac{10^{99}+1}{10^{89}+1}< \dfrac{10^{99}+1+9}{10^{89}+1+9}=\dfrac{10^{99}+10}{10^{89}+10}=\dfrac{10\left(10^{98}+1\right)}{10\left(10^{88}+1\right)}=\dfrac{10^{98}+1}{10^{88}+1}\)
Vậy \(A< B\)