Tính chất nếu:
\(\dfrac{a}{b}>1\Rightarrow\dfrac{a}{b}>\dfrac{a+m}{b+m}\)
Ta có:
\(A=\dfrac{10^{99}+1}{10^{89}+1}>\dfrac{10^{99}+1+9}{10^{89}+1+9}\)
\(A>\dfrac{10^{99}+10}{10^{89}+10}\)
\(A>\dfrac{10\cdot\left(10^{98}+1\right)}{10\cdot\left(10^{88}+1\right)}\)
\(A>\dfrac{10^{98}+1}{10^{88}+1}\)
\(A>B\)
\(A=\dfrac{10^{99}+1}{10^{89}+1}< \dfrac{10^{99}+1+9}{10^{89}+1+9}=\dfrac{10^{99}+10}{10^{89}+10}=\dfrac{10\left(10^{98}+1\right)}{10\left(10^{88}+1\right)}=\dfrac{10^{98}+1}{10^{88}+1}\)
Vậy \(A< B\)