Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Cẩm Nhung
Xem chi tiết
Lấp La Lấp Lánh
5 tháng 2 2022 lúc 13:33

a) \(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^6\left(5+5^2\right)=30+5^2.30+...+5^6.30\)

\(=30\left(1+5^2+...+5^6\right)⋮30\Rightarrowđpcm\)

b) \(B=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{24}\left(3+3^3+3^5\right)=273+3^6.273+...+3^{24}.273\)

\(=273.\left(1+3^6+...+3^{24}\right)⋮273\Rightarrowđpcm\)

Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 13:34

a: \(B=5\left(1+5+5^2+5^3\right)+5^5\left(1+5+5^2+5^3\right)\)

\(=156\cdot5\cdot\left(1+5^4\right)\)

\(=780\left(1+5^4\right)⋮30\)

b: \(B=\left(3+3^3+3^5\right)+...+3^{24}\left(3+3^2+3^5\right)\)

\(=273\cdot\left(1+...+3^{24}\right)⋮273\)

TRẦN THỊ HƯỜNG
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
1 tháng 11 2017 lúc 20:32

Ta có : A = 5 + 52 + 53 + ..... + 58

=> A = (5 + 52) + (53 + 54) + ..... + (57 + 58)

=> A = (5 + 52) + 52(5 + 52) + ..... + 56(5 + 52)

=> A = 30 + 52.30 + .... + 56.30

=> A = 30(1 + 52 + .... + 56

Vì (1 + 52 + .... + 56) là số nguyên 

Vậy A = 30(1 + 52 + .... + 56) chia hết cho 30 

Phong Linh
8 tháng 6 2018 lúc 9:26

A=5+5^2+5^3+...+5^20

=(5+5^2)+(5^3+5^4)+...+(5^19+5^20)

=(5+5^2)+5^2(5+5^2)+...5^18(5+5^2)

=30+5^2.30+5^4.30+5^6.30+..+5^18.30

=30(1+5^2+5^4+5^6+..+5^18)(chia hết cho 30)

Vậy A là bội của 30

dohuong
Xem chi tiết
Vũ Hải Đăng
25 tháng 7 2022 lúc 20:25

Vũ Hải Đăng
25 tháng 7 2022 lúc 20:25

chữ mình hơi xấu thông cảm

ĐINH THU TRANG
Xem chi tiết
Trương Hoàng Lân
Xem chi tiết
pham tra nhu ngoc
Xem chi tiết
Hoàng Đức long
31 tháng 10 2015 lúc 21:16

A = 5 + 52 + 53 + .. . + 58

A = (5 + 52)+ (53 +54)+ .. . +(57+ 58)

A= 30+52(5+52)+....+56(5+52)

A=30.(52+54+56) chia hết cho 30 => A là bội của 30

 

Nguyễn Khánh Ly
Xem chi tiết
Phạm Lê Thiên Triệu
31 tháng 10 2018 lúc 17:10

A=5+52+53+........+58

A=(5.1+5.5)+(53.1+53.5)+......+(57.1+57.5)

A=5(1+5)+53(1+5)+.....+57(1+5)

A=5.6+53.6+....+57.6

A=5.6(1+52+54+56)

A=30(1+52+54+56)

=>Achia hết cho 30 => A là bội của 30

nguyen quoc huy
Xem chi tiết
Phạm Huy Đạo
19 tháng 2 2021 lúc 10:18

số số hạng của S là  (20-1)/1+1=20 ( số hạng)

có 5+25=5+5^2=30

chứng tỏ rằng giá trị của biểu thức A = 5 + 52 + 53 + ... + 520 là bội của 30

vì 20/2=10( nhóm) nên ta có 

S = (5+5^2) + ( 5^3 +5^4)+......+ (5^19 + 5^20)

S= 30 +5^2(5+5^2)+.....+5^18(5+5^2)

S=30.1+5^2.30+....+5^18.30

S=30(1+5^2+...+5^18)

vì 30 chia hết cho 30 và 1+5^2 +....+5^18 thuộc Z

suy ra S chia hết cho 30

suy ra S là bội của 30( đpcm)

vậy bài toán đã được chứng minh

Khách vãng lai đã xóa
Phạm Thị Bảo Ngọc
Xem chi tiết
Lê Thị Cẩm Tú
14 tháng 12 2016 lúc 20:44

A=5+5^2+5^3+...+5^20
=(5+5^2)+(5^3+5^4)+...+(5^19+5^20)
=(5+5^2)+5^2(5+5^2)+...5^18(5+5^2)
=30+5^2.30+5^4.30+5^6.30+..+5^18.30
=30(1+5^2+5^4+5^6+..+5^18)(chia hết cho 30)
Vậy A là bội của 30
 

lê thị ngọc anh
8 tháng 6 2018 lúc 9:07

A=5+5^2+5^3+...+5^20
=(5+5^2)+(5^3+5^4)+...+(5^19+5^20)
=(5+5^2)+5^2(5+5^2)+...5^18(5+5^2)
=30+5^2.30+5^4.30+5^6.30+..+5^18.30
=30(1+5^2+5^4+5^6+..+5^18)
=> A là bội của 3

WTFシSnow
8 tháng 6 2018 lúc 9:13

A = 5 + 5^2 + 5^3 + ... + 5^20 là bội của 30 / nên chia hết cho 30

= ( 5 + 5^2 ) + ( 5^3 + 5^4 ) + ... + ( 5^19 + 5^20 ) 

= ( 5 + 5^2 ) + 5^3 . ( 5 + 5^2 ) + ... + 5^19 . ( 5 + 5^2 )

= 30 + 5^3 . 30 + ... + 5^19 + 30

= 30 . ( 1 + 5^3 + ... + 5^19 ) : 30

Vậy A : 30

Nguyễn Anh Minh
Xem chi tiết
Sarah
22 tháng 7 2016 lúc 13:22

Đề bài: Chứng tỏ rằng:

a) Giá trị của biểu thức A=5+52+53+...+59 là bội của 31

Ta có: A=5+52+53+...+59 

            =(5 + 52 + 53) + .... + (56 + 57 + 59)

            = 5.31 + .... + 56.31

            = 31.(5 + .... + 56) là bội của 31