Giải phương trình sau: tanx = 0
Giải phương trình sau: tanx – 2.cotx + 1 = 0
Điều kiện
tanx – 2.cotx + 1 = 0
(Thỏa mãn điều kiện).
Vậy phương trình có tập nghiệm
{ + kπ; arctan(-2) + kπ} (k ∈ Z)
Giải phương trình sau: 3tan2x - 2√3 tanx + 3 = 0
3tan2 x - 2√3 tanx + 3 = 0
Đặt tanx = t
ta được phương trình bậc hai theo t:
3t2 - 2√3 t + 3 = 0(1)
Δ = (-2√3)2 - 4.3.3 = -24 < 0
Vậy Phương trình (1) vô nghiệm, nên không có x thỏa mãn đề bài
Giải phương trình √3 tanx + 1 = 0 là phương trình bậc nhất đố với tanx.
√3tanx + 1 = 0 ⇔ tanx = (-√3)/3 ⇔ x = (-π)/6 + kπ, k ∈ Z)
Giải các phương trình sau:
\(a,cos3x=-cos\left(x+\dfrac{\pi}{3}\right)\)
\(b,tanx+cotx=0\)
a) cos3x = \(cos\left(\pi-x-\dfrac{\pi}{3}\right)\)
<=> cos3x = \(cos\left(\dfrac{2\pi}{3}-x\right)\)
<=> 3x = \(\dfrac{2\pi}{3}-x\) hoặc 3x = \(\dfrac{-2\pi}{3}+x\)
<=> 4x = \(\dfrac{2\pi}{3}+k2\pi\) hoặc 2x = \(\dfrac{-2\pi}{3}+k2\pi\)
<=> x = \(\dfrac{\pi}{6}+\dfrac{k\pi}{2}\) hoặc x = \(\dfrac{-\pi}{3}+k\pi\)
<=> x = \(\left\{\dfrac{\pi}{6}+\dfrac{k\pi}{2};\dfrac{-\pi}{3}+k\pi;k\in Z\right\}\)
b ) Điều kiện sinx\(\ne0;cosx\ne0\)
<=> sin2x\(\ne0\) <=> x \(\ne\dfrac{k\pi}{2}\);k\(\in Z\)
tanx + cotx =0
<=> tan2x + tanx =0
<=> tanx(tanx+1)=0
<=> tanx=0 hoặc tanx = -1
<=> x=\(k\pi\) (loại) hoặc x = \(\dfrac{-\pi}{4}+k\pi\)
Vậy x = \(\dfrac{-\pi}{4}+k\pi;k\in Z\)
Giải phương trình 3 tanx+3 = 0
Giải phương trình tan x - π 6 - c o t π 3 + x = 0
Giải phương trình tan x - 30 ° cos ( 2 x - 150 ° ) = 0
Giải phương trình 3 tan 2 x - ( 1 + 3 ) tan x + 1 = 0
Giải phương trình sau: tanx = -1
tan x = -1 ⇔ tan x = tan (-π)/4 ⇔ x =(-π)/4 + kπ, k ∈ Z