Tọa độ giao điểm của hai đường thẳng d: x - 3y - 1 = 0; d ' = x = 2 t y = 3 - t là:
A. (1;4)
B. (-1;4)
C. (4;1)
D. (4;-1)
Giao điểm của hai đường thẳng x + y - 5 = 0 và 2x - 3y - 15 = 0 có tọa độ là:
A. (2;3)
B. (6;-1)
C. (1;4)
D. (6;1)
Chọn B.
Tọa độ giao điểm là nghiệm của hệ phương trình:
Giao điểm của hai đường thẳng x + y - 5 = 0 và 2x - 3y + 5 = 0 có tọa độ là
A. (2;3)
B. (1;1)
C. (-2;-3)
D. (4;1)
Chọn A.
Tọa độ giao điểm của hai đường thẳng x + y - 5 = 0 và 2x - 3y + 5 = 0 là nghiệm của hệ phương trình:
Tìm tọa độ giao điểm của đường thẳng (d) : 2x- 3y+ 12= 0 và đường thẳng y= 2
A. (2; 2)
B. (-3; 2)
C. (3; 2)
D. ( 2; 3)
Gọi M( x; y) là giao điểm của đường thẳng (d) và đường thẳng y= 2
Khi đó; tọa độ điểm M là nghiệm hệ phương trình:
Vậy M( - 3; 2)
Chọn B.
Tọa độ giao điểm của đường thẳng Δ: 4x - 3y - 26 = 0 và đường thẳng d: 3x + 4y - 7 = 0 là:
A. (5;2)
B. (2;6)
C. (2;-6)
D. (5;-2)
Chọn D.
Tọa độ giao điểm của đường thẳng Δ: 4x - 3y - 26 = 0 và đường thẳng d: 3x + 4y - 7 = 0 là:
Vậy (5;-2).
Tọa độ giao điểm của 2 đường thẳng d1: 7x - 3y + 16 = 0 và d2: x - 10 = 0 là:
A. (-10;-18)
B. (10; 86 3 )
C. (-10;18)
D. (-10; - 86 3 )
Chọn B.
Tọa độ giao điểm của 2 đường thẳng d1: 7x - 3y + 16 = 0 và d2: x + 10 = 0 là nghiệm của hệ phương trình:
Vậy giao điểm của hai đường thẳng d1 và d2 là
1:cho hai điểm A(1;-4); B(1;2) viết pttq đường trung trực AB
2: cho tam giác ABC có A(1; 1); B(0; -2); C( 4;2). Viết phương trình tổng quát TRUNG TUYẾN CM
3: tìm tọa độ giao điểm của hai đường thẳng sau đây: \(\Delta1:\left\{{}\begin{matrix}x=22+2t\\y=55+5t\end{matrix}\right.\)và \(\Delta2:2x+3y-19=0\)
4:cho 4 điểm A(1; 2); B(-1; 4) C(2;2 ); D(-3; 2). Tìm tọa độ giao điểm của hai đường thẳng AB và CD
5: cho M(1;2) và đường thẳng d: 2x+y-5=0. Tìm tọa độ của điểm đối xứng với điểm M qua d là?
giao điểm A của đường thẳng (d): x-3y+8=0 và phân giác của góc II và góc IV có tọa độ là (xo,yo) vậy xo.yo=
giao dien khi do x1=x2;y1=y2. roi giai pt tim duoc x;y. tu do tinh duoc h
Trong mặt phẳng tọa độ Oxy , cho điểm I (-1;2) và đường thẳng d: x+3y+5 = 0
a) Viết phương trình đường tròn (C) có tâm I và đường kính bằng \(4\sqrt{5}\).Tìm tọa độ các giao điểm của d và (C)
b) Viết phương trình đường thằng Δ vuông góc với d và căt (C) tại hai điểm phân biệt A,B sao cho tam giác IAB tù và có diện tích bằng \(5\sqrt{3}\)
a, Bán kính: \(R=2\sqrt{5}\)
Phương trình đường tròn: \(\left(x+1\right)^2+\left(y-2\right)^2=20\)
Giao điểm của d và (C) có tọa độ là nghiệm hệ:
\(\left\{{}\begin{matrix}\left(x+1\right)^2+\left(y-2\right)^2=20\\x+3y+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(3y+4\right)^2+\left(y-2\right)^2=20\\x=-3y-5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10y^2+20y=0\\x=-3y-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x=-5\end{matrix}\right.\\\left\{{}\begin{matrix}y=-2\\x=1\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}M=\left(0;-5\right)\\N=\left(-2;1\right)\end{matrix}\right.\) là các giao điểm
b, Gọi H là trung điểm AB.
Đường thẳng \(\Delta\) vuông góc với d nên có phương trình dạng: \(3x-y+m=0\left(m\in R\right)\)
Ta có: \(S_{IAB}=\dfrac{1}{2}.R^2.sinAIB=10.sinAIB=5\sqrt{3}\)
\(\Rightarrow sinAIB=\dfrac{\sqrt{3}}{2}\)
Mà tam giác ABC tù nên \(\widehat{AIB}=120^o\)
\(\Rightarrow\widehat{HBI}=30^o\)
Khi đó:
\(IH=d\left(I;\Delta\right)\)
\(\Leftrightarrow R.sinHBI=\dfrac{\left|-3-2+m\right|}{\sqrt{10}}\)
\(\Leftrightarrow2\sqrt{5}.sin30^o=\dfrac{\left|m-5\right|}{\sqrt{10}}\)
\(\Leftrightarrow m=5\pm5\sqrt{2}\)
\(\Rightarrow\left[{}\begin{matrix}\Delta:3x-y+5+5\sqrt{2}=0\\\Delta:3x-y+5-5\sqrt{2}=0\end{matrix}\right.\)
Tìm tọa độ giao điểm của đường thẳng ( a) : 4x- y-5= 0 và đường thẳng (b) : 2x- 3y – 5= 0.
A. (1; 1)
B. Không có giao điểm.
C. (1; -1)
D. Có vô số điểm chung
Gọi M( x; y) là giao điểm của 2 đường thẳng (a) và (b) ( nếu có).
Khi đó; tọa độ điểm M là nghiệm hệ phương trình:
Vậy tọa độ giao điểm của 2 đường thẳng đã cho là : M( 1; -1)
Chọn C.