Cho a = 2 3 . 5 2 . 11 . Tìm ƯCLN của a và b.
A. ƯCLN(a,b)= 2 3 . 5
B. ƯCLN(a,b)=2.11
C. ƯCLN(a,b)=2.5
D. ƯCLN(a,b)= 2 3 . 3 2 . 5 2 . 11
1.tìm các số tự nhiên a và b biết
a,bcnn(a,b)=36 ưcln(a,b)=b
b,bcnn(a,b)=15 ưcln(a,b);a x b=135
2.tìm stn x nhỏ nhất sao cho:
a,x:10,12lần lượt dư9 và 11 và x:hết cho 11
b,x:17dư 3,x:19 dư 14
3,cho ưcln a,b =1.hãy tìm :
a,ưcln(a,a-b)
b,ưcln(b,a x b-a)
Cho ƯCLN(a;b)=1. Hãy tìm ƯCLN(11. a +2.b; 18.a +5.b)
Tìm 2 số tự nhiên a và b biết
a.a+b=60 và ƯCLN(a,b) + BCNN(a,b)=84
b.a+2b=48 và ƯCLN(a,b) + 3.BCNN(a,b)=144
c.BCNN(a,b)+ ƯCLN(a,b)=2ab
d.a/b=2,6 và ƯCLN(a,b)=5
e.Tìm ƯC của 6k+5 và 8k+3 (k thuộc N)
f.Cho A=n.(n+1)/2 và B=2n+1(n thuộc N*).Tìm ƯCLN(a,b)
MIk đang cần gấp nhé!!!
Bài 1 : Tìm ƯCLN của :
a) 2n+1 và 3n+1 ( n thuộc vào số tự nhiên)
b) ab thông số + ba thông số và 33 với a+b không chia hết cho 3
c) 123456789 và 98765432
Bài 2 : Tìm a và b biết
a) 7*a=11*b và ƯCLN (a,b) =45
b) a*b=864 và ƯCLN (a,b) =6
Cho mk hỏi :
Cho 2 số a = 2^2 x 3 x 11 và b = 2 x 5 x 11^2
Tìm ƯCLN của 2 số đó
ƯCLN của hai số đó là 2.3.11= 66
HT
Bài 1: Biết rằng 79 và 97 là 2 số nguyên tố. Hãy tìm ƯCLN và BCNN của hai số này.
Bài 2: Biết số 3^a và và 5^2 và 3 mũ 3 có ƯCLN là 3^3. 5^2 và BCNN là 3^4. 5^3. Tìm a và b
Bài 1: Vì mỗi số nguyên tố chỉ có ước là 1 và chính nó mà 79 và 97 là hai số nguyên tố khác nhau nên ƯCLN(79, 97) = 1 và BCNN (79, 97) = 79.97 = 7 663.
Bài 2:
ƯCLN (3a.52; 33.5b). BCNN = (3a.52; 33.5b) = ( 33.53).(34.53)
= (33.34).(52.53) = 33+4.52+3 = 37.55
Tích của 2 số đã cho:(3a.52).(33.5b) = ( 3a.33).(52.5b) = 3a+3.5b+2
Ta có tích của hai số bằng tích của ƯCLN và BCNN của hai số ấy nên:
37.55= 3a+3.5b+2. Do đó: a + 3 = 7 ⇒ a = 7 – 3 = 4
và b + 2 = 5 ⇒ b = 5 -2
Vậy a = 4 và b = 3.
1. Cho a;b;c lẻ
CM: ƯCLN (a;b;c)=ƯCLN (a+b/2;b+c/2;a+c/2)
2. Tìm ƯCLN (1995^4+3.1995^2+1;1995^3+2.1995)
3.CMR: n!+1 và (n+1)!+1 nguyên tố cùng nhau
Tìm ƯCLN và BCNN của :
a) 3 . 52 và 52 . 7
b) 22 . 3 . 5; 32 . 7 và 3 . 5 . 11
Tìm ƯCLN và BCNN của :
a) 3 . 52 và 52 . 7
b) 22 . 3 . 5; 32 . 7 và 3 . 5 . 11
a: ƯCLN(a;b)=5
=>a⋮5 và b⋮5
a+b=40
mà a⋮5 và b⋮5
nên (a;b)∈{(5;35);(35;5);(10;30);(30;10);(15;25);(25;15);(20;20)}
mà ƯCLN(a;b)=5
nên (a;b)∈{(5;35);(35;5);(15;25);(25;15)}
b: ƯCLN(a;b)=8
=>a⋮8 và b⋮8
ab=768
mà a⋮8 và b⋮8
nên (a;b)∈{(8;96);(96;8);(16;48);(48;16);(24;32);(32;24)}
mà ƯCLN(a;b)=8
nên (a;b)∈{(8;96);(96;8);(24;32);(32;24)}
c: a*b=BCNN(a;b)*ƯCLN(a;b)
=>\(a\cdot b=10\cdot900=9000\)
mà a⋮10 và b⋮10 vì ƯCLN(a;b)=10
nên (a;b)∈{(10;900);(900;10);(20;450);(450;20);(30;300);(300;30);(50;180);(180;50);(60;150);(150;60);(90;100);(100;90)}
mà ƯCLN(a;b)=10
nên (a;b)∈{(10;900);(900;10);(20;450);(450;20);(50;180);(180;50);(90;100);(100;90)}
d: \(S=3+3^2+3^3+\cdots+3^{120}\)
\(=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+\cdots+\left(3^{117}+3^{118}+3^{119}+3^{120}\right)\)
\(=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+\ldots+3^{117}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+3^5+\cdots+3^{117}\right)\) ⋮40
Ta có: \(S=3+3^2+\cdots+3^{120}\)
\(=3\left(1+3+\cdots+3^{119}\right)\) ⋮3
mà S⋮40
và ƯCLN(40;3)=1
nên S⋮40*3
=>S⋮120