Chứng minh đẳng thức P − Q Q = R − S S và hai phân thức P Q và R S thỏa mãn P Q = R S .
Chứng minh bất đẳng thức sau: \(|a|+|b|\ge|a+b|\) với mọi a, b \(\in R\)
Ta có \(\left|a\right|;\left|b\right|;\left|a+b\right|\ge0\)
Suy ra bất đẳng thức tương đương \(\left(\left|a\right|+\left|b\right|\right)^2\ge\left(\left|a+b\right|\right)^2\)
\(\Leftrightarrow a^2+2\left|ab\right|+b^2\ge a^2+2ab+b^2\)
\(\Leftrightarrow\left|ab\right|\ge ab\) (đúng)
Dấu "=" xảy ra \(\Leftrightarrow ab\ge0\)
Chứng minh bất đẳng thức : \(\frac{a+b}{2}\ge\sqrt{ab}\left(a,b\notin R^-\right)\)
ta có:\(\left(\sqrt{a}-\sqrt{b}\right)\ge0\)
\(\Rightarrow a-2\sqrt{ab}+b\ge0\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Rightarrow\frac{a+b}{2}\ge\sqrt{ab}\)
dấu "=" xảy ra khi a=b
Cho A bằng 34x89y
tìm x y biết:
A chia hết cho 4 chia hết cho 3 chia 2 dư1 chia 5 dư 4
tích đúng cho ai hợp lý
\(\frac{a+b}{2}>=\sqrt{ab}\)
\(\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2>=2\sqrt{ab}\)
\(\left(\sqrt{a}\right)^2-2\sqrt{ab}+\left(\sqrt{b}\right)^2>=0\)
\(\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)luôn đúng
<=>\(\frac{a+b}{2}>=\sqrt{ab}\)
k giúp mình nhé
Chứng minh bất đẳng thức sau :
\(e^x\ge x+1\) với mọi \(x\in R\)
\(e^x\ge x+1\) với mọi \(x\in R\) \(\Leftrightarrow e^x-x-1\ge0\) với mọi \(x\in R\)
Xét hàm số \(f\left(x\right)=e^x-x-1\) với mọi \(x\in R\)
Ta có : \(f'\left(x\right)=e^x-1=0\Leftrightarrow x=0\)
và : \(\lim\limits_{x\rightarrow-\infty}f\left(x\right)=\lim\limits_{x\rightarrow-\infty}\left(e^x-x-1\right)=+\infty\)
\(\lim\limits_{x\rightarrow+\infty}f\left(x\right)=\lim\limits_{x\rightarrow+\infty}\left(e^x-x-1\right)=+\infty\)
Xét bảng biến thiên :
Từ bảng biến thiên ta có : \(f\left(x\right)\ge0\) với mọi \(x\in R\)
hay : \(e^x-x-1\ge0\) với mọi \(x\in R\)
=> Điều phải chứng minh
Chứng minh: \(\frac{3}{2}\ge sin\frac{A}{2}+sin\frac{B}{2}+sin\frac{C}{2}>1\)
P/s: Không dùng bất đẳng thức lượng giác hoặc đẳng thức lượng giác của lớp 10 (nếu dùng thì phải chứng minh lại bằng kiến thức lớp 9)
1. trong mỗi trường hợp sau tìm hai đa thức P và Q thõa mãn đẳng thức
a)\(\frac{\left(x+2\right)P}{x-2}=\frac{\left(x-1\right)Q}{x^2-4}\)
b)\(\frac{\left(x+2\right)P}{x^2-1}=\frac{\left(x-2\right)Q}{x^2-2x+1}\)
2, cho hai phân thức \(\frac{P}{Q}\)và \(\frac{R}{S}\). chứng tỏ rằng:
a) nếu\(\frac{P}{Q}=\frac{R}{S}\) thì \(\frac{P+Q}{Q}=\frac{R+S}{S}\)
b) nếu\(\frac{P}{Q}=\frac{R}{S}\) và\(P\ne Q\) thì\(R\ne S\) và\(\frac{P}{Q-P}=\frac{R}{S-R}\)
Chứng minh:
\(\frac{1}{1\sqrt{2}}+\frac{1}{2\sqrt{3}}+....+\frac{1}{2004\sqrt{2005}}< 2\)
P/s: Có ai biết đẳng thức: \(\frac{1}{\sqrt{k}\left(k-1\right)}< .....\). MÌnh quên mất cái đẳng thức đó; bạn nào biết thì viết và chứng minh lại giúp mình với. Thanks
1.trong mỗi trường hợp sau hãy tìm hai đa thức P và Q thõa mãn đẳng thức:
a) \(\dfrac{\left(x+2\right)P}{x-2}=\dfrac{\left(x-1\right)Q}{x^2-4}\)
b) \(\dfrac{\left(x+2\right)P}{x^2-1}=\dfrac{\left(x-2\right)Q}{x^2-2x+1}\)
2. cho hai phân thức\(\dfrac{P}{Q}\)và \(\dfrac{R}{S}\). chứng tỏ rằng:
a) nếu \(\dfrac{P}{Q}=\dfrac{R}{S}\)thì \(\dfrac{P+Q}{Q}=\dfrac{R+S}{S}\)
b) nếu \(\dfrac{P}{Q}=\dfrac{R}{S}\) và \(P\ne Q\)thì \(R\ne S\) và \(\dfrac{P}{Q-P}=\dfrac{R}{S-R}\)
Bài 1.
a) Do hai phân thức bằng nhau , ta có :
( x +2)P( x2 - 22) = ( x - 1)Q( x -2)
=( x + 2)P( x - 2)( x + 2) = ( x - 1)Q( x - 2)
Suy ra : P = x - 1 ; Q = ( x + 2)2
b) Do hai phân thức bằng nhau , ta có :
( x + 2)P(x2 - 2x + 1) = ( x - 2)Q( x2 - 1)
= ( x + 2)P( x - 1)2 = ( x - 2)Q( x - 1)( x + 1)
Suy ra : P = ( x - 2)( x + 1) = x2 - x - 2
Q = ( x + 2)( x - 1) = x2 + x + 2
Bài 2. a) Do : \(\dfrac{P}{Q}=\dfrac{R}{S}=>PS=QR\)
Xét : ( P + Q)S= PS + QS = QR + QS = Q( R + S)
-> \(\dfrac{P+Q}{Q}=\dfrac{R+S}{S}\)
b) Do : \(\dfrac{P}{Q}=\dfrac{R}{S}=>PS=QR\)
Xét : ( S - R)P = PS - PR = QR - PR = R( Q - P)
-> \(\dfrac{R-S}{R}=\dfrac{Q-P}{P}\)
- > \(\dfrac{R}{R-S}=\dfrac{P}{Q-P}\)
Cho \(a\in R\)sao cho \(a\left(a+n\right)=k\) hoặc \(a\left(a-n\right)=k\)(\(x,k\in R\)cho trước). Chứng minh chỉ có 1 nghiệm a duy nhất thoả mãn đẳng thức trên.
Chứng minh với mọi x, y \(\in R\), bất đẳng thức sau luôn đúng:
\(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right)\)
Cho hai phân thức P Q và R S thỏa mãn P Q = R S và P ≠ Q.
Chứng minh: R ≠ S và P Q + P = R S + R .
Xuất phát từ điều cần chứng minh Û P(S + R) = R(Q + P)
Rút gọn còn PS = RQ hay P Q = R S (đúng với giả thiết).