a) Chứng tỏ rằng với n ∈ ℕ , n ≠ 0 thì a n ( n + a ) = 1 n − 1 n + a .
b) Sử dụng kết quả của ý a) để tính nhanh: 2 1.3 + 2 3.5 + 2 5.7 + ... + 2 11.13
a) Chứng tỏ rằng với n ∈ ℕ , n ≠ 0 t h ì a n ( n + a ) = 1 n − 1 n + a
b) Sử dụng kết quả của ý a) để tính nhanh:
2 1.3 + 2 3.5 + 2 5.7 + ... + 2 11.13
a ) a n ( n + a ) = n + a − n n ( n + a ) = n + a n ( n + a ) − n n ( n + a ) = 1 n − 1 n + a ≤
b ) 2 1.3 + 2 3.5 + ... 2 11.13 = 1 − 1 3 + 1 3 − 1 5 + ... + 1 11 − 1 13 = 12 13
a) Chứng tỏ rằng với n ∈ ℕ , n ≠ 0 t h ì 1 n ( n + 1 ) = 1 n − 1 n + 1
b) Sử dụng kết quả của ý a) để tính nhanh: 1 1.2 + 1 2.3 + 1 3.4 + ... + 1 9.10
a ) 1 n ( n + 1 ) = n + 1 − n n ( n + 1 ) = n + 1 n ( n + 1 ) − n n ( n + 1 ) = 1 n − 1 n + 1
b ) 1 1.2 + 1 2.3 + ... 1 9.10 = 1 1 − 1 2 + 1 2 − 1 3 + ... + 1 9 − 1 10 = 9 10
a) Chứng tỏ rằng với n ∈ ℕ , n ≠ 0 thì 1 n ( n + 1 ) = 1 n − 1 n + 1
b) Sử dụng kết quả của ý a) để tính nhanh: 1 1.2 + 1 2.3 + 1 3.4 + ... + 1 9.10
a ) 1 n ( n + 1 ) = n + 1 − n n ( n + 1 ) = n + 1 n ( n + 1 ) − n n ( n + 1 ) = 1 n − 1 n + 1
b ) 1 1.2 + 1 2.3 + ... 1 9.10 = 1 1 − 1 2 + 1 2 − 1 3 + ... + 1 9 − 1 10 = 9 10
a,chứng tỏ rằng với mọi số tự nhiên n thì tích (n+3).(n+6) chia hết cho 2
b, chứng tỏ rằng với mọi số tự nhiên n thì tích n.(n+5) chia hết cho 2
a) Cho phân số a b ( a , b ∈ ℕ , b ≠ 0 ) .Giả sử a b <1 và m ∈ ℕ , m ≠ 0 . Chứng tỏ rằng a b < a + m b + m .
b) Áp dụng so sánh: 437 564 v à 446 573 .
a) Thực hiện quy đồng a b = a ( b + m ) b ( b + m ) = a b + a m b 2 + b m ;
a + m b + m = b ( a + m ) b ( b + m ) = a b + b m b 2 + b m . Vì a b < 1=> a < b => ab +am < ab + bm
Từ đó thu được a b < a + m b + m
b) 437 564 < 437 + 9 564 + 9 = 446 573 .
1.Chứng tỏ rằng với mọi số tự nhiên n thì tích ( n + 3 ) ( n + 6 ) chia hết cho 2
2.Chứng tỏ rằng với mọi số tự nhiên n thì tích n(n+5) chia hết cho 2
3. Gọi A = n2 + n + 1 . Chứng minh rằng :
a) A không chia hết cho 2
b) A không chia hết cho 5
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
bài 9
a)chứng tỏ rằng với mọi số nguyên n thì (n+4).(n+7) luôn là một số chẵn
b)chứng tỏ rằng (a+b) (a-b)=22-b2
chứng tỏ rằng với n thuộc N , khác 0 thì 1\n(n+1) = 1\n - 1\ n +1
1/n - 1/n+1 = n+1/n(n+1) - n/n(n+1) = n+1-n/n(n+1) = 1/n(n+1)
Vậy 1/n(n+1) = 1/n - 1/n+1
tìm các số tự nhiên a và b sao cho a.b=105 và a<b
chứng tỏ rằng với mọi số tự nhiên n thì (n+2017).(n+2018) luôn chia hết cho 2
chứng tỏ rằng với mọi số tự nhiên n thì (n+8).(n+12). (n+7)luôn chia hết cho 3
giúp mình với mình đang gấp!