a ) a n ( n + a ) = n + a − n n ( n + a ) = n + a n ( n + a ) − n n ( n + a ) = 1 n − 1 n + a ≤
b ) 2 1.3 + 2 3.5 + ... 2 11.13 = 1 − 1 3 + 1 3 − 1 5 + ... + 1 11 − 1 13 = 12 13
a ) a n ( n + a ) = n + a − n n ( n + a ) = n + a n ( n + a ) − n n ( n + a ) = 1 n − 1 n + a ≤
b ) 2 1.3 + 2 3.5 + ... 2 11.13 = 1 − 1 3 + 1 3 − 1 5 + ... + 1 11 − 1 13 = 12 13
a) Chứng tỏ rằng với n ∈ ℕ , n ≠ 0 t h ì 1 n ( n + 1 ) = 1 n − 1 n + 1
b) Sử dụng kết quả của ý a) để tính nhanh: 1 1.2 + 1 2.3 + 1 3.4 + ... + 1 9.10
a) Chứng tỏ rằng với n ∈ ℕ , n ≠ 0 thì 1 n ( n + 1 ) = 1 n − 1 n + 1
b) Sử dụng kết quả của ý a) để tính nhanh: 1 1.2 + 1 2.3 + 1 3.4 + ... + 1 9.10
a) Chứng tỏ rằng với n ∈ ℕ , n ≠ 0 thì a n ( n + a ) = 1 n − 1 n + a .
b) Sử dụng kết quả của ý a) để tính nhanh: 2 1.3 + 2 3.5 + 2 5.7 + ... + 2 11.13
cho B=3+3 mũ 2 +...+3 mũ 2015
tìm X để 2xb+3=3 mũ 2
cho n thuộc n*
a, chứng tỏ 1+1/n.(n+2)=(n+1) mũ 2/n.(n=2)
b, ÁP DỤNG KẾT QUẢ CÂU A TÍNH
S=(1+1/1.3).(1+1/2.4).(1+1/3.5).....(1+1/2009.2011)
1 . Tính tổng
a, \(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)
b, \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+....+\frac{5}{99.101}\)
2 . Chứng tỏ rằng phân số \(\frac{2n+1}{3n+2}\)là phân số tối giản
3 . Cho A = \(\frac{n+2}{n-5}\)( n thuộc Z , n khác 5 ) Tìm x để A thuộc Z
a) chứng tỏ rằng với n thuộc N, n khác 0
1/ n(n+1)= 1/n - 1/ n+1
b) áp dụng kết quả ở câu a) để tính nhanh:
A= 1/ 1.2+1/ 2.3+ 1/3.4+......+1/9.10
giup mk bai nai voi
Chứng tỏ rằng
\(\frac{k}{n.\left(n+k\right)}\)=\(\frac{1}{n}-\frac{1}{n+k}\)
Aps dụng;Tính; S=\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
a) Tính nhanh : A = 2/2.3 + 2/5.7 + ...... +2/97. 99
b) Chứng minh rằng mọi phân số có dạng n/n+1 ( với n thuộc N , n khác 0 ) đều là phân số tối giản
Chứng tỏ rằng
S = 1/2 + 1/3 + 1/4 + ...+ 1/63 > 2
Cho S = 1/11 + 1/12 + 1/13 + 1/14 + ...+ 1/20 . Hãy so sánh S và 1/2
Tìm n để : 2/1.3 + 2/3.5 + 2/5.7+ ...+ 2/n(n+2) < 2003/2004