Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Hoàng Thùy Linh
Xem chi tiết
Kiều Vũ Linh
20 tháng 10 2023 lúc 8:19

a) Xem lại đề

b) x³ - 4x²y + 4xy² - 9x

= x(x² - 4xy + 4y² - 9)

= x[(x² - 4xy + 4y² - 3²]

= x[(x - 2y)² - 3²]

= x(x - 2y - 3)(x - 2y + 3)

c) x³ - y³ + x - y

= (x³ - y³) + (x - y)

= (x - y)(x² + xy + y²) + (x - y)

= (x - y)(x² + xy + y² + 1)

d) 4x² - 4xy + 2x - y + y²

= (4x² - 4xy + y²) + (2x - y)

= (2x - y)² + (2x - y)

= (2x - y)(2x - y + 1)

e) 9x² - 3x + 2y - 4y²

= (9x² - 4y²) - (3x - 2y)

= (3x - 2y)(3x + 2y) - (3x - 2y)

= (3x - 2y)(3x + 2y - 1)

f) 3x² - 6xy + 3y² - 5x + 5y

= (3x² - 6xy + 3y²) - (5x - 5y)

= 3(x² - 2xy + y²) - 5(x - y)

= 3(x - y)² - 5(x - y)

= (x - y)[(3(x - y) - 5]

= (x - y)(3x - 3y - 5)

Diệu Anh
Xem chi tiết
Hoàng_Linh_Nga
15 tháng 10 2017 lúc 22:08

a, x^2-9+(x-3)^2 = (x-3)(x+3)+(x-3)^2=(x-3)(x+3+x-3)=2x(x-3)

b,có sai k ạ ! vì mình thấy tự nhiên có ẩn y ở đó , nếu đề bài 2 ẩn thì 1 trong 3 hạng tử chứa ẩn x kia phải có thêm 1 ẩn y

c,đề bài thiếu  ẩn ở hạng tử thứ nhất ạ !

Diệu Anh
15 tháng 10 2017 lúc 22:12

b mình viết đúng rồi mà, c hạng tử 1 là x^3

Hoàng_Linh_Nga
15 tháng 10 2017 lúc 22:27

câu c bạn dùng máy tính bấm nghiệm nhé , dùng mode =>5=> 4 nhé ! 

còn câu b mình chưa ra !

vân nguyễn
Xem chi tiết
Trần Ái Linh
30 tháng 7 2021 lúc 18:33

a) `x^4+2x^3-4x-4`

`=(x^4-4)+(2x^3-4x)`

`=(x^2-2)(x^2+2)+2x(x^2-2)`

`=(x^2-2)(x^2+2+2x)`

b) `x^3-4x^2+12x-27`

`=(x^3-27)-(4x^2-12x)`

`=(x-3)(x^2+3x+9)-4x(x-3)`

`=(x-3)(x^2+3x+9-4x)`

`=(x-3)(x^2-x+9)`

c) `xy-4y-5x+20`

`=y(x-4)-5(x-4)`

`=(y-5)(x-4)`

Nguyễn Lê Phước Thịnh
30 tháng 7 2021 lúc 21:57

a) Ta có: \(x^4+2x^3-4x-4\)

\(=\left(x^4-4\right)+2x^3-4x\)

\(=\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)

\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)

b) Ta có: \(x^3-4x^2+12x-27\)

\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\cdot\left(x-3\right)\)

\(=\left(x-3\right)\left(x^2-x+9\right)\)

c) Ta có: \(xy-4y-5x+20\)

\(=y\left(x-4\right)-5\left(x-4\right)\)

\(=\left(x-4\right)\left(y-5\right)\)

Tiến Đạt
Xem chi tiết
Nguyễn Hoàng Minh
6 tháng 11 2021 lúc 14:09

\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Nguyễn Bùi Thị A
Xem chi tiết
nguyen phu thuan
18 tháng 11 2016 lúc 17:01

a)

3x3y2+6x2y4=3x2y2*(x+y2)

b)

16-4x2=4*(4-x2)

c)

xy+xz+5x+5y=(xy+5y)+(xz+5x)

                   =y*(x+5)+x*(z+5)

                  =(x+5+z+5)*(y+x)

                  =5*(x+z)*(x+y)

                   

Hoàng Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 7 2021 lúc 20:43

a) Ta có: \(8x+4x^2-12xy\)

\(=4x\left(2+x-3y\right)\)

b) Ta có: \(5x^3-10x^2+5x\)

\(=5x\left(x^2-2x+1\right)\)

\(=5x\left(x-1\right)^2\)

c) Ta có: \(x^3+x^2y-xy^2-y^3\)

\(=x^2\left(x+y\right)-y^2\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)^2\)

d) Ta có: \(x^2-8x-9\)

\(=x^2-9x+x-9\)

\(=\left(x-9\right)\left(x+1\right)\)

Trần Ái Linh
21 tháng 7 2021 lúc 20:44

a. `8x+4x^2-12xy=4x(2+x-3y)`

b) `5x^3-10x^2+5x=5x(x^2-2x+1)`

c) `x^3+x^2y-xy^2-y^3=x^2(x+y)-y^2(x+y)=(x+y)(x^2-y^2)=(x+y)^2 (x-y)`

d) `x^2-8x-9=(x^2-2.x.4+4^2)-25=(x-4)^2-5^2=(x+1)(x-9)`

Lai Thi Thuy Linh
Xem chi tiết
Phương An
13 tháng 10 2016 lúc 19:16

\(4x^2+8xy-3x-6y=4x\left(x+2y\right)-3\left(x+2y\right)=\left(4x-3\right)\left(x+2y\right)\)

\(x^4y-3x^3y^2+3x^2y^3-xy^4=xy\left(x^3-3x^2y+3xy^2-y^3\right)=xy\left(x-y\right)^3\)

\(x^3-5x^2-14x=x\left(x^2-5x-14\right)=x\left(x^2-7x+2x-14\right)=x\left[x\left(x-7\right)+2\left(x-7\right)\right]=x\left(x-7\right)\left(x+2\right)\)

\(x^4+4y^4=\left(x^2\right)^2+2\times x^2\times2y^2+\left(2y^2\right)^2-4x^2y^2=\left(x^2+2y^2\right)^2-\left(2xy\right)^2=\left(x^2-2xy+2y^2\right)\left(x^2+2xy+2y^2\right)\)

Hậu Vệ Thép
Xem chi tiết
ThyXingGái
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 12 2021 lúc 16:25

\(a,=x\left(x-2\right)^2\\ b,=\left(x-y\right)^2-9=\left(x-y-3\right)\left(x-y+3\right)\\ c,=x^2\left(2x-1\right)-4\left(2x-1\right)=\left(x-2\right)\left(x+2\right)\left(2x-1\right)\\ d,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x-y\right)\left(x+y-5\right)\\ e,=3\left[\left(x-y\right)^2-4z^2\right]=3\left(x-y-2z\right)\left(x-y+2z\right)\\ f,=x\left[\left(x-2\right)^2-y^2\right]=x\left(x-y-2\right)\left(x+y-2\right)\\ g,=x\left[\left(x-y\right)^2-25\right]=x\left(x-y-5\right)\left(x-y+5\right)\\ h,=x^3-x-2x+2=x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\\ =\left(x-1\right)\left(x^2+x-2\right)=\left(x-1\right)^2\left(x+2\right)\\ i,=3x^2+3x-10x-10=\left(x+1\right)\left(3x-10\right)\)