Cho elip (E) có một đỉnh là A( 5; 0) và có 1 tiêu điểm F1(- 4; 0). Phương trình chính tắc của elip là:
A. x 2 25 + y 2 16 = 1.
B. x 2 5 + y 2 4 = 1.
C. x 2 25 + y 2 9 = 1.
D. x 5 + y 4 = 1.
Cho elip (E) có phương trình: x 2 100 + y 2 36 = 1
a, Hãy xác định tọa độ các đỉnh, các tiêu điểm của elip (E) và vẽ elip đó.
b, Qua tiêu điểm của elip dựng đường song song với Oy và cắt elip tại hai điểm M và N. Tính độ dài đoạn MN.
a) (E): có a = 10; b = 6 ⇒ c2 = a2 – b2 = 64 ⇒ c = 8.
+ Tọa độ các đỉnh của elip là: A1(-10; 0); A2(10; 0); B1(0; -6); B2(0; 6)
+ Tọa độ hai tiêu điểm của elip: F1(-8; 0) và F2(8; 0)
+ Vẽ elip:
b) Ta có: M ∈ (E) ⇒ MF1 + MF2 = 2a = 20 (1)
MN // Oy ⇒ MN ⊥ F1F2 ⇒ MF12 – MF22 = F1F22 = (2c)2 = 162
⇒ (MF1 + MF2).(MF1 – MF2) = 162
⇒ MF1 – MF2 = 12,8 (Vì MF1 + MF2 = 20) (2).
Từ (1) và (2) ta có hệ phương trình
Vậy MN = 2.MF2 = 7,2.
Trong mặt phẳng tọa độ Oxy, cho elip có đỉnh A(0;4) nhìn hai tiêu điểm F 1 , F 2 dưới một góc bằng 120 ° . Phương trình chính tắc của elip đã cho là
Trong mặt phẳng tọa độ Oxy, cho elip có đỉnh A(0;4) nhìn hai tiêu điểm F 1 , F 2 dưới một góc bằng 120 ∘ . Phương trình chính tắc của elip đã cho là
A. x 2 8 + y 2 4 = 1
B. x 2 36 + y 2 9 = 1
C. x 2 6 + y 2 3 = 1
D. x 2 64 + y 2 16 = 1
cho elip (e) có pt chính tắc: x^2/9 + y^2/4=1
a) tìm tọa độ đỉnh, tiêu điểm f1, f2, và tâm sai của (e)
b) tìm tọa độ điểm m thuộc (e) thõa mãn mf1 -mf2=2
(f1 là tiêu điểm bên trái của elip)
Cho elip (E) có các tiêu điểm F 1 - 5 ; 0 , F 2 5 ; 0 và một điểm M nằm trên (E) sao cho chu vi của tam giác M F 1 F 2 bằng 30. Khi đó phương trình chính tắc của elip là:
A. x 2 75 + y 2 100 = 1
B. 100 x 2 + 75 y 2 = 1
C. 75 x 2 + 100 y 2 = 1
D. x 2 100 + y 2 75 = 1
Cho elip (E): x 2 16 + y 2 9 = 1 . Tìm tọa độ các đỉnh, các tiêu điểm và vẽ elip đó.
Elip (E): có a = 4, b = 3 ⇒ c2 = a2 – b2 = 7 ⇒ c = √7.
+ Các đỉnh của elip là: A1(–4; 0); A2(4; 0); B1(0; –3); B2(0; 3).
+ Tiêu điểm của elip: F1(–√7; 0); F2(√7; 0).
+ Vẽ elip:
Cho elip có phương trình: x 2 9 + y 2 4 = 1 Khi đó tọa độ hai đỉnh trên trục nhỏ của elip là.
A. B1( -2; 0) và B2( 2;0)
B. B1( 3;0) và B2( 2; 0)
C. B1( -3;0) và B2( -2;0)
D. B1( 3;0) và B2(-3;0)
Ta có: b2= 4 mà b> 0 nên b= 2
- Hai đỉnh trên trục nhỏ là: B1( -2; 0) và B2( 2;0)
Chọn A
Cho elip có phương trình: x 2 4 + y 2 1 = 1 Khi đó tọa độ hai đỉnh trên trục lớn của elip là.
A. A1( -1; 0) và A2( 1;0)
B. A1( 0; -1) và A2( 0; 1)
C. A1( 2;0) và A2( 1; 0)
D. A1( (-2;0) và A2(2;0)
Ta có: a2= 4 mà a> 0 nên a= 2
- Hai đỉnh trên trục lớn là: . A1( (-2;0) và A2(2;0)
Chọn D
Cho elip (E) đi qua điểm A(-3;0) và có tâm sai e = 5/6. Tiêu cự của (E) là:
A. 10
B. 5/3
C. 5
D. 10/3
Đáp án: C
Cho elip (E) đi qua điểm A(-3;0) và có tâm sai
Giả sử elip có dạng:
Vì (E) đi qua điểm
Vậy elip (E) có tiêu cự là: