Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 9 2019 lúc 11:24

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 11 2017 lúc 16:55

Đáp án B

Theo đề ta có 

thaoanh le thi thao
Xem chi tiết
Mysterious Person
26 tháng 6 2018 lúc 20:27

bài 1) đặc \(z=a+bi\) với \(a;b\in z;i^2=-1\)

ta có : \(\left(1+i\right)z+\overline{z}=i\Leftrightarrow\left(1+i\right)\left(a+bi\right)+\left(a-bi\right)=i\)

\(\Leftrightarrow a-b+ai+bi+a-bi=i\Leftrightarrow2a-b+ai=i\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a-b=0\\a=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

\(\Rightarrow z=1+2i\) \(\Rightarrow W=1+i+z=1+i+1+2i=2+3i\)

\(\Rightarrow\) \(modul\) của số phức \(W\) là : \(\left|W\right|=\sqrt{2^2+3^2}=\sqrt{13}\)

vậy .............................................................................................................

bài 2) đặc \(z=a+bi\) với \(a;b\in z;i^2=-1\)

ta có : \(z^2\left(1-i\right)+2\overline{z}^2\left(1+i\right)=21-i\)

\(\Leftrightarrow\left(a+bi\right)^2\left(1-i\right)+2\left(a-bi\right)^2\left(1+i\right)=21-i\)

\(\Leftrightarrow\left(a^2+2abi-b^2\right)\left(1-i\right)+2\left(a^2-2abi-b^2\right)\left(1+i\right)=21-i\)

\(\Leftrightarrow a^2-a^2i+2abi+2ab-b^2+b^2i+2\left(a^2+a^2i-2abi+2ab-b^2-b^2i\right)=21-i\)

\(\Leftrightarrow a^2-a^2i+2abi+2ab-b^2+b^2i+2a^2+2a^2i-4abi+4ab-2b^2-2b^2i=21-i\)

\(\Leftrightarrow a^2-a^2i+2abi+2ab-b^2+b^2i+2a^2+2a^2i-4abi+4ab-2b^2-2b^2i=21-i\)

\(\Leftrightarrow3a^2+6ab-3b^2+a^2i-2abi-b^2i=21-i\)

\(\Leftrightarrow\left(3a^2+6ab-3b^2\right)+\left(a^2-2ab-b^2\right)i=21-i\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a^2+6ab-3b^2=21\\a^2-2ab-b^2=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3a^2+6ab-3b^2=21\\3a^2-6ab-3b^2=-1\end{matrix}\right.\)

\(\Rightarrow-ab=-2\Leftrightarrow-a^2b^2=-4\)\(a^2-b^2=3\)

\(\Rightarrow a^2\)\(-b^2\) là nghiệm của phương trình \(X^2-3X-4=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2=4\\-b^2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a^2=4\\b^2=1\end{matrix}\right.\)

\(\Rightarrow\) \(modul\) của số phức \(z\)\(\left|z\right|=\sqrt{a^2+b^2}=\sqrt{4+1}=\sqrt{5}\)

vậy ...................................................................................................................

hôm sau phân câu 1 ; câu 2 rỏ ra nha bạn . cho dể đọc thôi haha

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 1 2020 lúc 4:10

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 9 2017 lúc 12:30

Đáp án C.

Ta có: 

Do đó P(-1;5)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 9 2019 lúc 12:48

Đáp án B

Theo đề ta có:

a − 4 2 + b − 3 2 = 9 F = 4 a − 4 + 3 b − 3 + 24 ⇔ x 2 + y 2 = 9 F − 24 = 4 x + 3 y

với  x = a − 4 y = b − 3

⇒ F − 24 2 = 4 x + 3 y 2 ≤ 4 2 + 3 2 x 2 + y 2 = 225 ⇔ − 15 ≤ F − 24 ≤ 15 ⇔ 9 ≤ F ≤ 39 ⇒ M + m = 48

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 6 2019 lúc 16:59

Đáp án C

Phương pháp

Chia cả 2 vế cho 1 + i  và suy ra đường biểu diễn của số phức z

Cách giải

 Tập hợp các điểm z là elip có độ dài trục lớn là 2a=4 a=2

và hai tiêu điểm  

 

Lê Thị Kim Chi
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 4 2019 lúc 19:59

Câu 1:

Gọi \(A\left(1;-1\right)\)\(B\left(2;3\right)\Rightarrow\) tập hợp \(z\) thoả mãn điều kiện đề bài là đường trung trực d của đoạn AB, ta dễ dàng viết được phương trình d có dạng \(4x-y-5=0\)

Gọi \(M\left(-2;-1\right)\)\(N\left(3;-2\right)\)\(I\left(a;b\right)\) là điểm bất kì biểu diễn \(z\Rightarrow I\in d\) \(\Rightarrow P=IM+IN\). Bài toán trở thành dạng cực trị hình học phẳng quen thuộc: cho đường thẳng d và 2 điểm M, N cố định, tìm I thuộc d để \(P=IM+IN\) đạt GTNN

Thay toạ độ M, N vào pt d ta được 2 giá trị trái dấu \(\Rightarrow M;N\) nằm về 2 phía so với d

Gọi \(C\) là điểm đối xứng M qua d \(\Rightarrow IM+IN=IC+IN\), mà \(IC+IN\ge CN\Rightarrow P_{min}=CN\) khi I, C, N thẳng hàng

Phương trình đường thẳng d' qua M và vuông góc d có dạng:

\(1\left(x+2\right)+4\left(y+1\right)=0\Leftrightarrow x+4y+6=0\)

Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+4y+6=0\\4x-y-5=0\end{matrix}\right.\) \(\Rightarrow D\left(\frac{14}{17};-\frac{29}{17}\right)\)

\(\overrightarrow{MD}=\overrightarrow{DC}\Rightarrow C\left(-2;-1\right)\Rightarrow P_{min}=CN=\sqrt{\left(3+2\right)^2+\left(-2+1\right)^2}=\sqrt{26}\)

Bài 2:

Tập hợp \(z\) là các điểm M thuộc đường tròn (C) tâm \(I\left(0;1\right)\) bán kính \(R=\sqrt{2}\) có phương trình \(x^2+\left(y-1\right)^2=2\)

\(\Rightarrow\left|z\right|=OM\Rightarrow\left|z\right|_{max}\) khi và chỉ khi \(M;I;O\) thẳng hàng và M, O nằm về hai phía so với I

\(\Rightarrow M\) là giao điểm của (C) với Oy \(\Rightarrow M\left(0;1+\sqrt{2}\right)\Rightarrow\) phần ảo của z là \(b=1+\sqrt{2}\)

Câu 3:

\(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)=5+\sqrt{2}i\)

\(\Rightarrow z=5-\sqrt{2}i\Rightarrow b=-\sqrt{2}\)

Nguyễn Việt Lâm
26 tháng 4 2019 lúc 20:45

Câu 4

\(z.z'=\left(m+3i\right)\left(2-\left(m+1\right)i\right)=2m-\left(m^2+m\right)i+6i+3m+3\)

\(=5m+3-\left(m^2+m-6\right)i\)

Để \(z.z'\) là số thực \(\Leftrightarrow m^2+m-6=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\)

Câu 5:

\(A\left(-4;0\right);B\left(0;4\right);M\left(x;3\right)\)

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;4\right)\\\overrightarrow{AM}=\left(x+4;3\right)\end{matrix}\right.\) \(\Rightarrow A,B,M\) khi và chỉ khi \(\frac{x+4}{4}=\frac{3}{4}\Rightarrow x=-1\)

Câu 6:

\(z=3z_1-2z_2=3\left(1+2i\right)-2\left(2-3i\right)=-1+12i\)

\(\Rightarrow b=12\)

Câu 7:

\(w=\left(1-i\right)^2z\)

Lấy môđun 2 vế:

\(\left|w\right|=\left|\left(1-i\right)^2\right|.\left|z\right|=2m\)

Câu 8:

\(3=\left|z-1+3i\right|=\left|z-1-i+4i\right|\ge\left|\left|z-1-i\right|-\left|4i\right|\right|=\left|\left|z-1-i\right|-4\right|\)

\(\Rightarrow\left|z-1-i\right|\ge-3+4=1\)

Nguyễn Việt Lâm
26 tháng 4 2019 lúc 21:12

Câu 9:

\(z=\frac{i^{2017}}{3+4i}=\frac{\left(i^2\right)^{1008}.i}{3+4i}=\frac{i}{3+4i}=\frac{i\left(3-4i\right)}{\left(3-4i\right)\left(3+4i\right)}=\frac{4}{25}+\frac{3}{25}i\)

Điểm biểu diễn z là \(A\left(\frac{4}{25};\frac{3}{25}\right)\)

Câu 10:

\(a=3\Rightarrow z\) nằm trên đường thẳng \(x=3\)

Câu 11:

\(z_1+z_2=1+2i+2-3i=3-i\)

Câu 12:

\(z=2+5i\Rightarrow\overline{z}=2-5i\)

\(\Rightarrow w=i\left(2+5i\right)+2-5i=-3-3i\)

Câu 13:

\(z^2+z+1=0\Rightarrow\left\{{}\begin{matrix}z_1=-\frac{1}{2}+\frac{\sqrt{3}}{2}i\\z_2=-\frac{1}{2}-\frac{\sqrt{3}}{2}i\end{matrix}\right.\) (ném vô casio cho giải pt)

\(\Rightarrow z_0=-\frac{1}{2}-\frac{\sqrt{3}}{2}i\Rightarrow w=\frac{i}{z_0}=-\frac{\sqrt{3}}{2}-\frac{1}{2}i\) (ném vô mode 2 bấm cho lẹ) \(\Rightarrow M\left(-\frac{\sqrt{3}}{2};-\frac{1}{2}\right)\)

Câu 14:

Đặt \(z=x+yi\) \(\Rightarrow\left|x+7+\left(y-5\right)i\right|=\left|x-1+\left(y-11\right)i\right|\)

\(\Rightarrow\left(x+7\right)^2+\left(y-5\right)^2=\left(x-1\right)^2+\left(y-11\right)^2\)

\(\Rightarrow4x+3y-12=0\) quỹ đạo là đường thẳng d

Gọi \(A\left(2;8\right);B\left(6;6\right)\) và I là trung điểm AB \(\Rightarrow I\left(4;7\right)\)

\(M\left(x;y\right)\) là điểm biểu diễn \(z\Rightarrow P=MA^2+MB^2\)

Tam giác AMB có MI là trung tuyến ứng với cạnh AB

Theo công thức trung tuyến: \(MA^2+MB^2=2MI^2+\frac{AB^2}{2}\)

\(\Rightarrow P_{min}\) khi và chỉ khi \(MI_{min}\)

Gọi \(C\) là hình chiếu của I lên d \(\Rightarrow\Delta ICM\) vuông tại C, do IM là cạnh huyền và IC là cạnh góc vuông nên \(IM\ge IC\Rightarrow IM_{min}=IC\)

Vậy ta quy về bài toán tìm hình chiếu của I lên d

Đường thẳng qua I vuông góc với d có pt:

\(3\left(x-4\right)-4\left(y-7\right)=0\Leftrightarrow3x-4y+16=0\)

Tọa độ C là nghiệm: \(\left\{{}\begin{matrix}4x+3y-12=0\\3x-4y+16=0\end{matrix}\right.\) \(\Rightarrow C\left(0;4\right)\)

\(\Rightarrow p=x^2-y^2=0^2-4^2=-16\) (p này khác P kia nha :D)

Trần Anh
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 6 2019 lúc 19:39

\(\left|z-\left(1-3i\right)\right|=3\sqrt{2}\Rightarrow\left|\overline{z-\left(1-3i\right)}\right|=3\sqrt{2}\)

\(\Rightarrow\left|\overline{z}-\overline{\left(1-3i\right)}\right|=3\sqrt{2}\) \(\Rightarrow\left|\overline{z}-\left(1+3i\right)\right|=3\sqrt{2}\)

\(\Rightarrow\) Tập hợp \(\overline{z}\) là đường tròn tâm \(I\left(-1;-3\right)\) bán kính \(R=3\sqrt{2}\)

\(w=\left(1-\left(i^2\right)^{1009}.i\right)\left(\overline{z}+3i\right)=\left(1+i\right)\left(\overline{z}+3i\right)\)

\(\Rightarrow w=\left(1+i\right)\overline{z}-3+3i\)

\(\Rightarrow\) Bán kính đường tròn (C): \(r=\left|1+i\right|.3\sqrt{2}=6\Rightarrow S=\pi r^2=36\pi\)