Tính tổng 1 2.3 + 1 3.4 + 1 4.5 + ... + 1 19.20
tính tổng A=1/2.3+1/3.4+1/4.5+...1/25.26
\(A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{25\cdot26}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{25}-\frac{1}{26}\)
\(\Rightarrow A=\frac{1}{2}-\frac{1}{26}\)
\(\Rightarrow A=\frac{12}{26}=\frac{6}{13}\)
Tính tổng:
1/1.2+1/2.3+1/3.4+1/4.5+1/5.6
Tính tổng 1 .2 + 2.3 + 3.4 +4.5+.............+49 . 50
A=1.2+2.3+...+49.50
=>3A=1.2.3+2.3.3+...+49.50.3
=>3A=1.2.(3-0)+2.3.(4-1)+....+49.50.(51-48)
=>3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+49.50.51-48.49.50
=>3A=49.50.51
=>A=49.25.51=62475
=>3A=
Đặt A=1.2+2.3+3.4+4.5+...+49.50
3A=1.2.3+2.3.3+3.4.3+4.5.3+...+49.50.3
3A=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+4.5.(6-3)+...+49.50.(51-48)
3A=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+49.50.51-48.49.50
3A=(1.2.3+2.3.4+3.4.5+4.5.6+...+49.50.51)-(0.1.2+1.2.3+2.3.4+3.4.5+...+48.49.50)
3A=49.50.51-0.1.2
3A=49.50.51
A=49.50.17
A=41650
đặt S làm tên biểu thức trên
ta có :
S = 1 .2 + 2.3 + 3.4 +4.5+.............+49 . 50
3S = 1.2.3 + 2.3.3 + 3.4.3 + 4.5.4 + ... + 49.50.3
3S = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + 4.5.(6-3 ) + ... + 49.50.(51 - 48 )
3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + 4.5.6 - 3.4.5 + ... + 49.50.51 - 48.49.50
3S = 49.50.51
S = 49.50.51 : 3
S = 41650
tính tổng
S = 1/2.3 + 1/3.4 + 1/4.5 +...+ 1/99.100
\(S=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=\frac{1}{2}-\frac{1}{100}\)
\(S=\frac{49}{100}\)
chúc các bạn học tốt
\(S=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(S=1-\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(S=1\times\left(\frac{1}{2}-\frac{1}{100}\right)\)
\(S=1\times\frac{49}{100}\)
\(S=\frac{49}{100}\)
Ta có: \(S=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
=>\(S=\frac{1}{2}-\frac{1}{100}=\frac{50}{100}-\frac{1}{100}=\frac{50-1}{100}=\frac{49}{100}\)
Vậy \(S=\frac{49}{100}\)
Tính tổng giùm mình nhé :1/1.2 +1/2.3 +1/3.4 +1/4.5 +1/5.6 +1/6.7
Ta có : \(\frac{1}{1.2}\)+ \(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+\(\frac{1}{4.5}\)+\(\frac{1}{5.6}\)+\(\frac{1}{6.7}\)
= 1 - \(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+\(\frac{1}{3}\)-\(\frac{1}{4}\)+\(\frac{1}{4}\)-\(\frac{1}{5}\)+\(\frac{1}{5}\)-\(\frac{1}{6}\)+\(\frac{1}{6}\)-\(\frac{1}{7}\)
= 1 - \(\frac{1}{7}\)= \(\frac{6}{7}\)
=1-1/2+1/2-1/3+1/3-1/4+...+1/6-1/7=1-1/7=6/7
1/1 -1/2 +1/2 -1/3 +1/3 -1/4 +1/4 -1/5 +1/5 -1/6 +1/6 -1/7
1/1- 1/7 =6/7
Tính tổng:
\(M=\dfrac{1}{2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}\)
\(M=\dfrac{1}{2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\)
\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\)
\(M=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\)
\(M=1-\dfrac{1}{7}\)
\(M=\dfrac{6}{7}\)
tham khảo
https://hoc24.vn/cau-hoi/123134145156167.5003535458609#:~:text=l%C3%BAc%2021%3A02-,1,14,-12.3%2B13.4%2B14.5
vào đi
refer
https://hoc24.vn/cau-hoi/123134145156167.5003535458609#:~:text=l%C3%BAc%2021%3A02-,1,14,-12.3%2B13.4%2B14.5
Tính tổng : 1/2.3+ 1/3.4+ 1/4.5+ .... + 1/19.20
Tính cho tiết giúp mình nhé ! @
1/2.3 + 1/3.4 + 1/4.5 + ... + 1/19.20
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/19 - 1/20
= 1/2 - 1/20
= 9/20
k đii
1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/19 - 1/20
1/2 - 1/20
9/20
1/2.3 + 1/3.4 + 1/4.5 + ... + 1/19.20
= 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/19 - 1/20
= 1/2 - 1/20
= 9/20
Tính tổng : 1/2.3+ 1/3.4+ 1/4.5+ .... + 1/19.20
nhớ giải thích vì sao cho mình nhé
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{9}{20}\)
Ta có công thức :\(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}\)
\(=\frac{9}{20}\)
Ta có :
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{19}-\frac{1}{20}\)
\(=\frac{1}{2}-\frac{1}{20}=\frac{10}{20}-\frac{1}{20}=\frac{9}{20}\)
Vậy tổng \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{19.20}=\frac{9}{20}\)
tính tổng 100 số hạng đầu tiên của các dãy sau:
1/1.2, 1/2.3, 1/3.4, 1/4.5,...
NX : Số hạng đầu tiên có mẫu : 1 . 2
=> Số hạng thứ 100 có mẫu : 100 . ( 100 + 1 ) = 100 . 101
Ta có dãy số :
1/1 . 2 + 1/2 . 3 + 1/3 . 4 + ...+ 1/100 . 1/101
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ...+ 1/100 - 1/101
= 1 - 1/101
= 101/101 - 1/101
= 100/101
Vậy tổng 100 số hạng đầu tiên là 100/101
số hạng thứ 100 của dãy là \(\frac{1}{100\cdot101}\)
tổng của 100 số hạng đầu tiên của dãy :
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{100\cdot101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
CÁC BẠN LÀM TỐT LẮM.NGÁY MAI MÌNH THƯỞNG CHO MỖI BẠN 3 TỈ ĐỒNG TIỀN VIỆT NAM LUÔN.CÁC BẠN ĐÃ MAY MẮN GẶP ĐƯỢC NGƯỜI NHƯ MÌNH RỒI ĐẤY.CHÚC CÁC BẠN THÀNH CÔNG TRONG SỰ NGHIỆP SẮP TỚI NHA.hÔM NAY TRỜI LẠNH LẮM NÊN MÌNH PHẢI ĐI NGỦ SƠM RÔI.CHÀO TẠM BIỆT VÀ HẸN GẶP LẠI CÁC BẠN TỎNG CHƯƠNG TRÌNH SẮP TỚI NHA.bẠN NÀO ĐIỂM CAO NHẤT SẼ ĐƯƠC NỦA TỶ TỪ MÌNH.bẠN NÀO GIẢI ĐÁP VỪA Ý MÍNH SẼ ĐƯỢC GẤP ĐÔI SỐ TIỀN ĐÓ.xIN TỰ GIỚI THIỆU TÊN TỚ LÀ BÙI HUY ĐÔNG, MÌNH LÀ TỶ PHÚ CỦA CHÂU Á TRẺ TUỔI NHẤT ĐẤY.CÁC BAN THẬT SỰ LÀ NHỮNG NGƯỜI MAY MẮN NHẤT MÀ MÌNH TỪNG GẶP
Tính tổng\(A=\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\)
A = 1/1.2 + 1/2.3 + 1/3.4 + 1/4.5
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5
= 1 - 1/5
= 5/5 - 1/5
= 4/5