1 . Rút gọn biểu thức B = (x - 2) : 2x + 5x rồi tính giá trị của biểu thức B tại x = 0
1 a. Rút gọn biểu thức sau A = \(\left(x^{\text{2}}-2x+4\right):\left(x^3+8\right)-x^2\) rồi tính giá trị của A tại x = -2
b. Rút gọn biểu thức B = (x - 2) : 2x + 5x rồi tính giá trị của biểu thức B tại x = 0
Bài 5: Cho biểu thức B = x2/ 5x + 25 + 2( x + 5)/ x + 50 +5x / x (x + 5 ) với x khác ( -5 , 0 )
a, rút gọn biểu thức B
b, tính giá trị của biểu thức tại x = -2
a) Ta có: \(B=\dfrac{x^2}{5x+25}+\dfrac{2\left(x+5\right)}{x}+\dfrac{50+5x}{x\left(x+5\right)}\)
\(=\dfrac{x^2}{5\left(x+5\right)}+\dfrac{2\left(x+5\right)}{x}+\dfrac{50+5x}{x\left(x+5\right)}\)
\(=\dfrac{x^3}{5x\left(x+5\right)}+\dfrac{10\left(x+5\right)^2}{5x\left(x+5\right)}+\dfrac{250+25x}{5x\left(x+5\right)}\)
\(=\dfrac{x^3+10x^2+100x+250+250+25x}{5x\left(x+5\right)}\)
\(=\dfrac{x^3+10x^2+125x+500}{5x\left(x+5\right)}\)
\(=\dfrac{x^3+5x^2+5x^2+25x+100x+500}{5x\left(x+5\right)}\)
\(=\dfrac{x^2\left(x+5\right)+5x\left(x+5\right)+100\left(x+5\right)}{5x\left(x+5\right)}\)
\(=\dfrac{\left(x+5\right)\left(x^2+5x+100\right)}{5x\left(x+5\right)}\)
\(=\dfrac{x^2+5x+100}{5x}\)
b) Thay x=-2 vào biểu thức \(B=\dfrac{x^2+5x+100}{5x}\), ta được:
\(B=\dfrac{\left(-2\right)^2+5\cdot\left(-2\right)+100}{-5\cdot2}=\dfrac{4+100-10}{-10}=\dfrac{94}{-10}=-\dfrac{94}{10}=\dfrac{-47}{5}\)
Vậy: Khi x=-2 thì \(B=-\dfrac{47}{5}\)
Rút gọn rồi tính giá trị của biểu thức x 2 5 x + 25 + 2 x − 5 x + 50 + 5 x x x + 5 tại x = -2
b) Rút gọn, rồi tính giá trị của biểu thức:
A= (2x + 1)2 + (2x – 1)2 – (2x + 1)(4x – 2) + xy tại x = 1; y = 2023.
A=(2x+1-2x+1)^2+xy
=xy+4
=2023+4
=2027
\(A=(2x+1-2x+1)^2+xy\)
\(=xy+4\)
\(=2023+4\)
\(=2027\)
.Cho biểu thức A = ( x - 5 ) ( x2 + 5x + 25) - ( x – 2)(x+ 2) + x.(x2 + x + 4)
a) Rút gọn biểu thức A
b) Tính giá trị biểu thức A biết x = -2
b) Tính giá trị biểu thức A biết x2 – 1 = 0
a) A = (x - 5)(x² + 5x + 25) - (x - 2)(x + 2) + x(x² + x + 4)
= x³ - 125 - x² + 4 + x³ + x² + 4x
= (x³ + x³) + (-x² + x²) + 4x + (-125 + 4)
= 2x³ + 4x - 121
b) Tại x = -2 ta có:
A = 2.(-2)³ + 4.(-2) - 121
= 2.(-8) - 8 - 121
= -16 - 129
= -145
c) x² - 1 = 0
x² = 1
x = -1; x = 1
*) Tại x = -1 ta có:
A = 2.(-1)³ + 4.(-1) - 121
= 2.(-1) - 4 - 121
= -2 - 125
= -127
*) Tại x = 1 ta có:
A = 2.1³ + 4.1 - 121
= 2.1 + 4 - 121
= 2 - 117
= -115
1) cho A=x/x-1 + x/x+1 (x ko bằng +-1) và B=X^2-x/x^2-1 (x ko bằng +-1)
a)rút gọn A và tính A khi x=2
b)Rút gọn B và tìm x để B=2/5
c)tìm x thuộc Z để (A,B)thuộc Z
2)A =(2+x/2-x - 4x^2/x^2-4 - 2-x/2+x) : x^2 - 3x/2x^2 - x^3
a)rút gọn biểu thức A b) tính giá trị biểu thức A khi /x-5/=2
c)tìm x để A>0
3)B= x+2/x+3 - 5/x^2+x-6 - 1/2-x
a)rút gọn biểu thức B b)tìm x để B=3/2 c) tìm giá trị nguyên của x để B có giả trị nguyên
4)C= (2x/2x^2-5x+3 - 5/2x-3) : (3+2/1-x)
a)rút gọn biểu thức C b) tìm giá trị nguyên của biểu thức C biết :/2x-1/=3
c)tìm x để B >1 d) tìm giá trị nhỏ nhất của biểu thức C
5)D=(1 + x/x^2+1) : (1/x-1 - 2x/x^3+x-x^2-1)
a)rút gọn biểu thức D
b)tìm giá trị của x sao cho D<1
c)tìm giá trị nguyên của x để B có giá trị nguyên
bạn viết thế này khó nhìn quá
nhìn hơi đau mắt nhá bạn hoa mắt quá
Bài 1 Cho biểu thức : A = \(\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\) với ( x >0 và x ≠ 1)
a) Rút gọn biểu thức A; b) Tính giá trị của biểu thức A tại .\(x=3+2\sqrt{2}\)
a: \(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)
\(=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\sqrt{x}-1\)
a) \(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)
Đk: \(x>0\) và \(x\ne1\)
\(\Rightarrow A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)
\(=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}-2x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)
b) Thay \(x=3+2\sqrt{2}\) vào A ta được:
\(A=\sqrt{3+2\sqrt{2}}-1=\sqrt{\left(\sqrt{2}+1\right)^2}-1\)
\(=\sqrt{2}+1-1=\sqrt{2}\)
(Vì \(\sqrt{2}+1>0\Rightarrow\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\))
Tính (rút gọn) đơn thức sao rồi tính giá trị biểu thức
(2/5x^3y).(-5xy) tại x = -1; y = 1/2
Đặt \(A=\left(\dfrac{2}{5}x^3y\right)\cdot\left(-5xy\right)\)
\(=\left(\dfrac{2}{5}\cdot\left(-5\right)\right)\cdot x^3\cdot x\cdot y\cdot y\)
\(=-2x^4y^2\)
Thay x=-1 và y=1/2 vào A, ta được:
\(A=-2\cdot\left(-1\right)^4\cdot\left(\dfrac{1}{2}\right)^2=-2\cdot\dfrac{1}{4}=-\dfrac{1}{2}\)