Viết biểu thức ( x + 1 ) x 2 - x + 1 dưới dạng tổng hai lập phương
Viết ác biểu thức sau dưới dạn luỹ thừa của một số hữu tỉ
a)10^8 x 2^8
b)15^8 x 9^4
c)10^8 : 2^8
d)27^2 : 25^3
e)25^4 x 2 ^8
viết biểu thức sau dưới dạng tổng
(x+1) (x^2 - x + 1)
(x+1)(x^2 - x + 1)
=x^3 - x^2 + x + x^2 -x +1
\(\left(x+1\right)\left(x^2-x+1\right)\)
\(=x^3+1\)
Hok tốt !
Chứng minh biểu thức sau viết được dưới dạng tổng các bìnhphương hai biểu thức: x^2 +(x+1)^2 + 3(x +2)^2 +4(x +3)^2
\(x^2+\left(x+1\right)^2+3\left(x+2\right)^2+4\left(x+3\right)^2\)
\(=x^2+x^2+1+3x^2+4+4x^2+9\)
\(=x^2+x^2+1+3x^2+3+4x^2+9+1\)
\(=2x^2+1+3x^2+3+4x^2+9+1\)
Từ đây ghép x vào rồi tính nốt đẳng thức thôi nhé
Bài 1:
Cho ba số thực x,y,z khác 0 thỏa mãn (x+y+z)^2= x^2+y^2+z^2. Chứng minh rằng 1/x+1/y+1/z =0
Bài 2: Viết biểu thức sau dưới dạng lập phương của một tổng hoặc một hiệu
-8x^6 - 12^4 - 6x^2- y^3
Bài 3:Viết biểu thức sau dưới dạng tích
1/9-(2x-y)^2
giúp mình với ạ, mình đang cần gấp ạ. Cảm ơn ạ!
2:
-8x^6-12x^4y-6x^2y^2-y^3
=-(8x^6+12x^4y+6x^2y^2+y^3)
=-(2x^2+y)^3
3:
=(1/3)^2-(2x-y)^2
=(1/3-2x+y)(1/3+2x-y)
Bài1. Để tính thương 2 số a,b nguyên: t=a/b, hãy lựa kiểu dữ liệu thích hợp cho t,a,b? về biểu thức toán học: Bài 2. Viết các biểu thức sau dưới dạng trong Pascal a. a*x*x*x+b*x*x+c*x+d b. 1/(1+x)*(1+x)-2/(x*x+1) Bài3: Viết 1 chương trình tính và in ra màn hình kết quả của 2 phép tính sau: a) 18 div 5; b) 20 mod 7;
Bài 1:
-Kiểu dữ liệu phù hợp là kiểu số thực (real)
Bài 2:
a) a*x*x*x+b*x*x+c*x+d
b) 1/(1+x)*(1+x)-2/(x*x+1)
Bài 3: (Lười quá, nhường bạn khác nhé :D)
Câu 1:Tìm x biết:
(x+1)3 - x(x-3).(x+3)-6(x-1)(x+2)=13
Câu 2:Viết biểu thức sau dưới dạng bình phương của 1 biểu thức
(x-2)(x-3)(x-4)(x-5)+1
\(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)(2)
\(=\left(x-2\right)\left(x-5\right)\left(x-3\right)\left(x-4\right)+1\)
\(=\left(x^2-7x+10\right)\left(x^2-7x+12\right)+1\)(1)
Đặt \(x^2-7x+10=t\)
\(\Rightarrow\left(1\right)=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2\)
Mà \(x^2-7x+10=t\)nên \(\left(2\right)=\left(x^2-7x+11\right)^2\)
Vậy \(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)\(=\left(x^2-7x+11\right)^2\)
\(\left(x+1\right)^3-x\left(x-3\right)\left(x+3\right)-6\left(x-1\right)\left(x+2\right)=13\)
\(\Leftrightarrow x^3+3x^2+3x+1-x\left(x^2-9\right)-6\left(x^2+x-2\right)=13\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+9x-6x^2-6x+12=13\)
\(\Leftrightarrow-3x^2+6x=0\)
\(\Leftrightarrow-3\left(x^2-2\right)=0\)
\(\Leftrightarrow x^2-2=0\Leftrightarrow x^2=2\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
Bài 2: Hãy viết các biểu thức sau dưới dạng tích (giả thiết các biểu thức có nghĩa)
a/ a-\(\sqrt{a}\) b/a+b-2\(\sqrt{ab}\)
c/x+1-2\(\sqrt{x}\) d/x-1
e/x\(\sqrt{x}\)-1 f/x\(\sqrt{x}\)+y\(\sqrt{y}\)
a) \(=\sqrt{a}\left(\sqrt{a}-1\right)\)
b) \(=\left(\sqrt{a}\right)^2-2\sqrt{ab}+\left(\sqrt{b}\right)^2=\left(\sqrt{a}-\sqrt{b}\right)^2\)
c) \(=\left(\sqrt{x}\right)^2-2\sqrt{x}+1=\left(\sqrt{x}-1\right)^2\)
d) \(=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
e) \(=\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)\)
f) \(=\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)\)
Bài 2: Hãy viết các biểu thức sau dưới dạng tích (giả thiết các biểu thức có nghĩa)
a/\(a-\sqrt{a}\) b/a+b-2\(\sqrt{ab}\)
c/x+1-2\(\sqrt{x}\) d/x-1
e/\(x\sqrt{x}-1\) f/\(x\sqrt{x}+y\sqrt{y}\)
a: \(a-\sqrt{a}=\sqrt{a}\left(\sqrt{a}-1\right)\)
b: \(a-2\sqrt{ab}+b=\left(\sqrt{a}-\sqrt{b}\right)^2\)
c: \(x-2\sqrt{x}+1=\left(\sqrt{x}-1\right)^2\)
chứng minh rằng biểu thức sau viết dưới dạng tổng các bình phương của hai biểu thức
\(x^2+2\left(x+1\right)^2+3\left(x-2\right)^2+4\left(x+3\right)^2\)
\(x^2+2\left(x+1\right)^2+3\left(x-2\right)^2+4\left(x+3\right)^2\)
\(=x^2+2\left(x^2+2x+1\right)+3\left(x^2-4x+4\right)+4\left(x^2+6x+9\right)\)
\(=x^2+2x^2+4x+2+3x^2-12x+12+4x^2+24x+36\)
\(=10x^2+16x+50\)
Viết biểu thức dưới dạng tổng:
a) (a^2 + 2a + 3).(a^2 - 2a - 3)
b) (-a^2 - 2a + 3)^2
c) (x-y-z)^2
d) (x+y+z).(x-y-z)
Viết biểu thức dưới dạng tích:
(x^2+x-1)^2-(x^2 + 2x +3)^2
a: \(\left(a^2+2a+3\right)\left(a^2-2a-3\right)\)
\(=\left[a^2+\left(2a+3\right)\right]\left[a^2-\left(2a+3\right)\right]\)
\(=\left(a^2\right)^2-\left(2a+3\right)^2\)
\(=a^4-\left(2a+3\right)^2\)
b: \(\left(-a^2-2a+3\right)^2\)
\(=\left(a^2+2a-3\right)^2\)
\(=a^4+4a^2+9+4a^3-18a-6a^2\)
\(=a^4+4a^3-2a^2-18a+9\)
c: \(\left(x-y-z\right)^2\)
\(=x^2-2x\left(y+z\right)+\left(y+z\right)^2\)
\(=x^2-2xy-2xz+y^2+2yz+z^2\)
d: \(\left(x+y+z\right)\left(x-y-z\right)\)
\(=x^2-\left(y+z\right)^2\)
\(=x^2-y^2-2yz-z^2\)