Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 11 2019 lúc 7:51

Đường thẳng d đi qua M(-2; 1; 1) có vecto chỉ phương là  a → (−1; 4; −1)

Đường thẳng d’ đi qua N(-1; -3; 2) có vecto chỉ phương là  b →  (1; 4; −3)

Suy ra:  a → ∧   b →  = (−8; −4; −8) ≠   0 →

Ta có:  MN → (1; −4; 1) nên  MN → .( a →    b → ) = 0 do đó hai đường thẳng d và d’ cắt nhau.

Khi đó (P) là mặt phẳng đi qua M(-2; 1; 1) và có  n P →  = (2; 1; 2)

Phương trình của (P) là : 2(x + 2) + (y – 1) + 2(z – 1) = 0 hay 2x + y + 2z + 1 = 0.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 10 2018 lúc 4:19

Đường thẳng d đi qua M(-2; 1; 1) có vecto chỉ phương  a → (−1; 4; −1)

Ta có:  MI → (1; −2; 0), chọn  n P →  =  MI →   a →  = (2; 1; 2)

Phương trình của (P) là: 2(x + 2) + (y – 1) + 2(z – 1) = 0 hay 2x + y + 2z + 1 = 0

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 2 2017 lúc 3:01

(β) vuông góc với d

⇒ (β) nhận vtcp của d Giải bài 6 trang 92 sgk Hình học 12 | Để học tốt Toán 12 là 1 vtpt.

(β) đi qua M(0; 0; -2)

⇒ (β): 4x + 3y + z + 2 = 0.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 7 2017 lúc 12:03

Đáp án B

Phương pháp giải:

Ứng dụng của tích có hướng để tìm vectơ pháp tuyến của mặt phẳng. Phương trình mặt phẳng đi qua  M ( x 0 ; y 0 ; z 0 )  và có VTPT  

Lời giải:

Vậy phương trình mặt phẳng (P): 2x-3y-z+7=0

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 1 2019 lúc 14:51

Chọn B

Thái Thùy Linh
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 1 2021 lúc 15:34

a.

Chọn \(C\left(1;1;1\right)\) là 1 điểm thuộc denta

\(\Rightarrow\overrightarrow{AC}=\left(0;-1;4\right)\)

Đường thẳng denta có \(\overrightarrow{u_{\Delta}}=\left(2;-1;1\right)\) là 1 vtcp

\(\Rightarrow\left[\overrightarrow{AC};\overrightarrow{u_{\Delta}}\right]=\left(3;8;2\right)\)

\(\Rightarrow\left(Q\right)\) nhận \(\left(3;8;2\right)\) là 1 vtpt

Phương trình (Q):

\(3\left(x-1\right)+8\left(y-2\right)+2\left(y+3\right)=0\)

b.

Mặt phẳng (P) nhận \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) là 1 vtpt

Ta có: \(\left[\overrightarrow{u_{\Delta}};\overrightarrow{n_{\left(P\right)}}\right]=\left(-2;-1;3\right)\)

Mặt phẳng (Q) nhận (2;1;-3) là 1 vtpt

Phương trình (Q):

\(2\left(x-1\right)+1\left(y-2\right)-3\left(z+3\right)=0\)

Nguyễn Việt Lâm
28 tháng 1 2021 lúc 15:54

c.

Gọi M là giao điểm denta và (P) thì tọa độ M thỏa:

\(-1+2t+2-t+t-3=0\Rightarrow t=1\)

\(\Rightarrow M\left(1;1;1\right)\)

\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{u_{\Delta}}\right]=\left(2;1;-3\right)\)

Đường thẳng d nhận (2;1;-3) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+2t\\y=1+t\\z=1-3t\end{matrix}\right.\)

d.

Do M thuộc denta nên tọa độ có dạng: \(M\left(-1+2t;2-t;t\right)\)

M là trung điểm AN \(\Rightarrow N\left(-3+4t;2-2t;2t+3\right)\)

N thuộc (P) nên: \(-3+4t+2-2t+2t+3-3=0\Rightarrow t=\dfrac{1}{4}\)

\(\Rightarrow\overrightarrow{MN}=\left(-2+2t;-t;t+3\right)=\left(-\dfrac{3}{2};-\dfrac{1}{4};\dfrac{13}{4}\right)=-\dfrac{1}{4}\left(6;1;13\right)\)

Phương trình d: \(\left\{{}\begin{matrix}x=1+6t\\y=2+t\\z=-3+13t\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 10 2019 lúc 13:48

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 8 2017 lúc 15:27

Đường thẳng d đi qua A(1; 1; 9) và có vecto chỉ phương  a → (1; 1; 0). Gọi (Q) là mặt phẳng đi qua d và vuông góc với (P).

Ta có:  n Q → = a → ∧ n P →  = (−2; 2; 1)

Phương trình của (Q) là : -2x + 2y + z – 9 = 0

Khi đó: d′ = (P) ∩ (Q)

Ta có:  n P → ∧ n Q →  = (6; 3; 6)

Chọn vecto chỉ phương của d’ là:  n a ' →  = (2; 1; 2)

Lấy một điểm thuộc (P) ∩ (Q), chẳng hạn A(-3; 1; 1)

Khi đó, phương trình của d’ là: Giải sách bài tập Toán 12 | Giải sbt Toán 12

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 12 2018 lúc 4:52

Đáp án D.

( d ) : x - 1 2 = y - 2 - 1 = z 1  đi qua B(1;2;0) có vecto chỉ phương n d → = 2 ; - 1 ; 1  

Với B A → = 1 ; - 1 ; 3 ,  vecto pháp tuyến của (P) là: B A → , u d → = 2 ; 5 ; 1  

⇒ P : 2 x - 2 + 5 y - 1 + z - 3 = 0 ⇔ 2 x + 5 y + z - 12 = 0  

Bán kính của mặt cầu cần tìm là d O , P = 2 30 5 .