Lập phương trình mặt phẳng (P) chứa đường thẳng d: x = - 2 - t y = 1 + 4 t z = 1 - t và song song với d 1 x - 1 1 = y - 1 4 = z - 1 - 3
Lập phương trình mặt phẳng (P) chứa hai đường thẳng: d: x = - 2 - t y = 1 + 4 t z = 1 - t và d': x = - 1 + t ' y = - 3 + 4 t ' z = 2 - 3 t '
Đường thẳng d đi qua M(-2; 1; 1) có vecto chỉ phương là a → (−1; 4; −1)
Đường thẳng d’ đi qua N(-1; -3; 2) có vecto chỉ phương là b → (1; 4; −3)
Suy ra: a → ∧ b → = (−8; −4; −8) ≠ 0 →
Ta có: MN → (1; −4; 1) nên MN → .( a → ∧ b → ) = 0 do đó hai đường thẳng d và d’ cắt nhau.
Khi đó (P) là mặt phẳng đi qua M(-2; 1; 1) và có n P → = (2; 1; 2)
Phương trình của (P) là : 2(x + 2) + (y – 1) + 2(z – 1) = 0 hay 2x + y + 2z + 1 = 0.
Lập phương trình mặt phẳng (P) đi qua điểm I(-1; -1; 1) và chứa đường thẳng: d: x + 2 - 1 = y - 1 4 = z - 1 - 1
Đường thẳng d đi qua M(-2; 1; 1) có vecto chỉ phương a → (−1; 4; −1)
Ta có: MI → (1; −2; 0), chọn n P → = MI → ∧ a → = (2; 1; 2)
Phương trình của (P) là: 2(x + 2) + (y – 1) + 2(z – 1) = 0 hay 2x + y + 2z + 1 = 0
Cho mặt phẳng (α) có phương trình: 3x + 5y - z - 2 = 0 và đường thẳng d có phương trình: x = 12 + 4 t y = 9 + 3 t z = 1 + t
Viết phương trình mặt phẳng β chứa điểm M và vuông góc với đường thẳng d.
(β) vuông góc với d
⇒ (β) nhận vtcp của d là 1 vtpt.
(β) đi qua M(0; 0; -2)
⇒ (β): 4x + 3y + z + 2 = 0.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng α : x + y - z - 2 = 0 và đường thẳng d : x + 1 2 = y - 1 1 = z - 2 1 Phương trình nào dưới đây là phương trình mặt phẳng chứa đường thẳng (d) và vuông góc với mặt phẳng α
A. x+y-z+2=0
B. 2x-3y-z+7=0
C. x+y+2z-4=0
D. 2x-3y-z-7=0
Đáp án B
Phương pháp giải:
Ứng dụng của tích có hướng để tìm vectơ pháp tuyến của mặt phẳng. Phương trình mặt phẳng đi qua M ( x 0 ; y 0 ; z 0 ) và có VTPT
Lời giải:
Vậy phương trình mặt phẳng (P): 2x-3y-z+7=0
Cho đường thẳng d : x - 1 1 = y + 1 2 = z - 1 . Viết phương trình mặt phẳng (P) chứa đường thẳng d, vuông góc với mặt phẳng (Oxy).
A. 2 x + y + 3 = 0
B. 2 x - y - 3 = 0
C. 2 x - y + 3 = 0
D. - 2 x + y + 3 z = 0
Cho A(1,2,-3), B(3,0,1) , denta :\(\left\{{}\begin{matrix}x=-1+2t\\y=2-t\\z=t\end{matrix}\right.\)
(P): x+y+z-3=0
a) Lập phương trình mặt phẳng (Q) đi qua điểm A và chứa đường thẳng denta
b) Lập phương trình mặt phẳng (Q) đi qua điểm A và song song với đường thẳng denta và vuông góc với mặt phẳng (P)
c) Lập phương trình đường thẳng d nằm trên mặt phẳng (P) cắt và vuông góc với denta
d) Lập phương trình đường thẳng d đi qua điểm A cắt denta tại M, cắt mặt phẳng (P) tại N sao cho M là trung điểm AN
a.
Chọn \(C\left(1;1;1\right)\) là 1 điểm thuộc denta
\(\Rightarrow\overrightarrow{AC}=\left(0;-1;4\right)\)
Đường thẳng denta có \(\overrightarrow{u_{\Delta}}=\left(2;-1;1\right)\) là 1 vtcp
\(\Rightarrow\left[\overrightarrow{AC};\overrightarrow{u_{\Delta}}\right]=\left(3;8;2\right)\)
\(\Rightarrow\left(Q\right)\) nhận \(\left(3;8;2\right)\) là 1 vtpt
Phương trình (Q):
\(3\left(x-1\right)+8\left(y-2\right)+2\left(y+3\right)=0\)
b.
Mặt phẳng (P) nhận \(\overrightarrow{n_{\left(P\right)}}=\left(1;1;1\right)\) là 1 vtpt
Ta có: \(\left[\overrightarrow{u_{\Delta}};\overrightarrow{n_{\left(P\right)}}\right]=\left(-2;-1;3\right)\)
Mặt phẳng (Q) nhận (2;1;-3) là 1 vtpt
Phương trình (Q):
\(2\left(x-1\right)+1\left(y-2\right)-3\left(z+3\right)=0\)
c.
Gọi M là giao điểm denta và (P) thì tọa độ M thỏa:
\(-1+2t+2-t+t-3=0\Rightarrow t=1\)
\(\Rightarrow M\left(1;1;1\right)\)
\(\left[\overrightarrow{n_{\left(P\right)}};\overrightarrow{u_{\Delta}}\right]=\left(2;1;-3\right)\)
Đường thẳng d nhận (2;1;-3) là 1 vtcp
Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+2t\\y=1+t\\z=1-3t\end{matrix}\right.\)
d.
Do M thuộc denta nên tọa độ có dạng: \(M\left(-1+2t;2-t;t\right)\)
M là trung điểm AN \(\Rightarrow N\left(-3+4t;2-2t;2t+3\right)\)
N thuộc (P) nên: \(-3+4t+2-2t+2t+3-3=0\Rightarrow t=\dfrac{1}{4}\)
\(\Rightarrow\overrightarrow{MN}=\left(-2+2t;-t;t+3\right)=\left(-\dfrac{3}{2};-\dfrac{1}{4};\dfrac{13}{4}\right)=-\dfrac{1}{4}\left(6;1;13\right)\)
Phương trình d: \(\left\{{}\begin{matrix}x=1+6t\\y=2+t\\z=-3+13t\end{matrix}\right.\)
Cho mặt phẳng α : 3x+5y-z-2=0 và đường thẳng d : x = 12 + 4 t y = 9 + 3 t z = 1 + t Gọi M là tọa độ giao điểm của đường thẳng d và mặt phẳng α . Viết phương trình mặt phẳng (P) chứa điểm M và vuông góc với đường thẳng d
Cho mặt phẳng (P) : x + 2y – 2z + 3 = 0
và đường thẳng d: x = 1 + t y = 1 + t z = 9
Lập phương trình đường thẳng d’ là hình chiếu vuông góc của d lên mặt phẳng (P).
Đường thẳng d đi qua A(1; 1; 9) và có vecto chỉ phương a → (1; 1; 0). Gọi (Q) là mặt phẳng đi qua d và vuông góc với (P).
Ta có: n Q → = a → ∧ n P → = (−2; 2; 1)
Phương trình của (Q) là : -2x + 2y + z – 9 = 0
Khi đó: d′ = (P) ∩ (Q)
Ta có: n P → ∧ n Q → = (6; 3; 6)
Chọn vecto chỉ phương của d’ là: n a ' → = (2; 1; 2)
Lấy một điểm thuộc (P) ∩ (Q), chẳng hạn A(-3; 1; 1)
Khi đó, phương trình của d’ là:
Trong không gian với hệ trục Oxyz cho điểm A(2;1;3) và đường thẳng có phương trình ( d ) : x - 1 2 = y - 2 - 1 = z 1 . Mặt phẳng (P) chứa A và d. Viết phương trình mặt cầu tâm O tiếp xúc với mặt phẳng (P).
A. x 2 + y 2 + z 2 = 12 5
B. x 2 + y 2 + z 2 = 3
C. x 2 + y 2 + z 2 = 6
D. x 2 + y 2 + z 2 = 24 5
Đáp án D.
( d ) : x - 1 2 = y - 2 - 1 = z 1 đi qua B(1;2;0) có vecto chỉ phương n d → = 2 ; - 1 ; 1
Với B A → = 1 ; - 1 ; 3 , vecto pháp tuyến của (P) là: B A → , u d → = 2 ; 5 ; 1
⇒ P : 2 x - 2 + 5 y - 1 + z - 3 = 0 ⇔ 2 x + 5 y + z - 12 = 0
Bán kính của mặt cầu cần tìm là d O , P = 2 30 5 .