Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Ngọc Ánh
Xem chi tiết
Ánh Dương
Xem chi tiết
Nguyễn Ngọc Lộc
18 tháng 9 2021 lúc 9:08

Không có mô tả.

Hoàng Đức Long
Xem chi tiết
Vũ Thành Nam
24 tháng 5 2019 lúc 3:14

Lực điện tổng hợp tác dụng lên q 0 là:  F → = F → 1 + F → 2 + F → 3 = F → 1 + F → 23

Trong đó: F 1 = k q 1 q 0 A O 2 = k q 1 q 0 2 3 a 3 2 2 = 3 k q 1 q 0 a 2 = 36.10 5

Vì BO = AO = CO nên  q 1 = q 2 = q 3 → F 1   =   F 2   =   F 3

F → 2 ; F → 3 = 120 0 → F 1 = F 23

Hoàng Đức Long
Xem chi tiết
Vũ Thành Nam
9 tháng 7 2017 lúc 11:51

Đáp án: A

Bình Trần Thị
Xem chi tiết
Tuấn Tủn
16 tháng 11 2017 lúc 20:33

a) \(\dfrac{2}{x^2}=\dfrac{8}{\left(0.08+x\right)^2}\)

=> x= 0.08 (m ) => Q3 đặt cách Q1= 0.08m cách Q2= 0.16m

b) \(\dfrac{\left|q1.q3\right|}{0.08^2}=\dfrac{\left|q1.q2\right|}{0.08^2}\)

=> q1=q2=-8.10^-8C

Bình Trần Thị
Xem chi tiết
Mysterious Person
7 tháng 6 2018 lúc 12:46

a) vì \(q_1\)\(q_2\) trái dấu nên \(q_3\) không thể đặc ở giữa \(AB\) và cũng không thể nằm ngoài giá của \(\overrightarrow{AB}\) vì khi đó tổng các lực tác dụng lên \(q_3\) sẽ khác không .

theo định luật \(Cu-lông\) ta có :

\(F_{13}=\dfrac{k.\left|q_1q_3\right|}{\varepsilon AC^2}=\dfrac{k\left|2.10^{-8}q_3\right|}{\varepsilon AC^2}\) ; \(F_{23}=\dfrac{k\left|q_2q_3\right|}{\varepsilon BC^2}=\dfrac{k\left|-8.10^{-8}q_3\right|}{\varepsilon BC^2}=\dfrac{k\left|8.10^{-8}q_3\right|}{\varepsilon BC^2}\)

\(\)để \(q_3\) cân bằng thì \(F_{13}=F_{23}\Leftrightarrow\dfrac{k\left|2.10^{-8}q_3\right|}{\varepsilon AC^2}=\dfrac{k\left|8.10^{-8}q_3\right|}{\varepsilon BC^2}\)

\(\Leftrightarrow\dfrac{AC^2}{BC^2}=\dfrac{2.10^{-8}}{8.10^{-8}}=\dfrac{1}{4}\Leftrightarrow\dfrac{AC}{BC}=\dfrac{1}{2}\Leftrightarrow BC=2AC\)

\(\Rightarrow A\) là trung điểm của \(BC\) với đoạn \(AB=8cm\) .

b) theo nhận xét ta thấy \(q_3< 0\) vì nếu \(q_3>0\) thì \(F_{31}\) cùng hướng với \(F_{21}\) nên \(q_1\) không thể nào cân bằng

để \(q_1\)\(q_2\) cần bằng thì : \(\left\{{}\begin{matrix}F_{31}=F_{21}\\F_{32}=F_{12}\end{matrix}\right.\Leftrightarrow F_{31}=F_{21}=F_{32}\)

nên ta chỉ cần \(F_{31}=F_{21}\) là đủ

\(\Rightarrow\dfrac{K\left|q_3q_1\right|}{\varepsilon AC^2}=\dfrac{k\left|q_2q_1\right|}{\varepsilon AB^2}\Leftrightarrow\dfrac{k\left|q_3q_1\right|}{\varepsilon8^2}=\dfrac{k\left|q_2q_1\right|}{\varepsilon8^2}\Leftrightarrow\left|q_3\right|=\left|q_2\right|\)

\(\Leftrightarrow\left|q_3\right|=\left|-8.10^{-8}\right|=8.10^{-8}\Leftrightarrow q_3=\pm8.10^{-8}\)

\(q_3< 0\Rightarrow q_3=-8.10^{-8}\)

vậy \(q_3=-8.10^{-8}\)

Phú Nguyễn
Xem chi tiết
Lê Đức Lực Online
Xem chi tiết
ĐQuang
Xem chi tiết