\(ChoA=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\);
\(B=\frac{2013}{51}+\frac{2013}{52}+\frac{2013}{53}+...+\frac{2013}{100}\)
Chứng minh rằng: \(\frac{B}{A}\) có giá trị nguyên
Chứng minh rằng:
a)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}< \frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
b)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}< 1-\frac{1}{2.3}\)
Cần gấp, ai nhanh mik tick nha
Ai giúp đi, làm ơnnnnnnnnnnnnnnnnnnn
\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(B=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(B< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)
\(B< \frac{50}{60}\Leftrightarrow B< \frac{5}{6}\)
cho A= \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+.........+\frac{1}{99.100}\)
CMR:
a) \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)
b) Cho A = \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
CMR: \(\frac{7}{12}< A< \frac{5}{6}\)
\(\frac{1}{1.2}+\frac{1}{3.4}+......+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-....+\frac{1}{49}-\frac{1}{50}=\left(1+\frac{1}{3}+....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{50}\right)=\left(1+\frac{1}{2}+.....+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)=\left(1+\frac{1}{2}+....+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}\left(đpcm\right)\)
\(theocaua\Rightarrow A=\frac{1}{26}+\frac{1}{27}+......+\frac{1}{50}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\left(5sohang\right)+\frac{1}{40}+\frac{1}{40}+....+\frac{1}{40}\left(10sohang\right)+\frac{1}{50}+\frac{1}{50}+....+\frac{1}{50}\left(10sohang\right)=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{37}{60}>\frac{35}{60}=\frac{7}{12}\left(1\right)\)
\(A=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}< \frac{1}{25}+\frac{1}{25}+...+\frac{1}{25}\left(5sohang\right)+\frac{1}{30}+\frac{1}{30}+....+\frac{1}{30}\left(10sohang\right)+\frac{1}{40}+\frac{1}{40}+.....+\frac{1}{40}\left(10sohang\right)=\frac{1}{4}+\frac{1}{3}+\frac{1}{5}=\frac{47}{60}< \frac{5}{6}=\frac{50}{60}\left(2\right)\) \(\left(1\right);\left(2\right)\Rightarrow\frac{7}{12}< A< \frac{5}{6}\)
Tính E=\(\frac{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+....+\frac{1}{100}}{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{99.100}}\)
đặt A = 1/1*2 + 1/3*4 + 1/5*6 + ... + 1/99*100
= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/99 - 1/100
= (1 + 1/3 + 1/5 + ... + 1/99) - (1/2 + 1/4 + 1/6 + ... + 1/100)
= 1 + 1/2 + 1/3 + ... + 1/100 - 2(1/2 + 1/4 + 1/6 + .... + 1/100)
= 1 + 1/2 + 1/3 + ... + 1/100 - 1 - 1/2 - 13 - ... - 1/50
= 1/51 + 1/52 + 1/53 + ... + 1/100
thay vào ra E = 1
Biến đổi mẫu ta được:
\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(\Rightarrow E=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}=1\)
Đặt \(P=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
\(\Rightarrow P=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)\(\Rightarrow P=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(\Rightarrow P=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(\Rightarrow P=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow P=\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
Vậy E = 1
Tính:
\(P=\frac{\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}}{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}}\)
Gọi \(Q=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(\Rightarrow Q=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow Q=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(\Rightarrow Q=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-2\left(1+\frac{1}{2}+...+\frac{1}{50}\right)\)
\(\Rightarrow Q=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(\Rightarrow P=1\)
1, CMR: \(\frac{7}{12}<\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{97.98}+\frac{1}{99.100}<\frac{5}{6}\)
2, CMR: \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{47.48}+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}\)
Tính A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+......+\frac{1}{99.100}=?\)
mk bít lm cách lớp 5, vừa học
Cần ko bn
chứng minh: \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
Xét vế trái: A\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
=>\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
=>\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
=>\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
=>\(A=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}=VP\)
=>đpcm (VP là vế phải)
1, CMR: \(\frac{7}{12}<\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{97.98}+\frac{1}{99.100}<\frac{5}{6}\)
2, CMR: \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{47.48}+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}\)