cho A=\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}vàB=\frac{2013}{51}+\frac{2013}{52}+\frac{2013}{53}+...+\frac{2013}{100}\)
Chứng Minh \(\frac{B}{A}\)là số nguyên
Cho A=\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+.......+\frac{1}{99.100}\)
và B=\(\frac{2013}{51}+\frac{2013}{52}+\frac{2013}{53}+.....+\frac{2013}{100}\)
Chúng minh rằng:\(\frac{B}{A}\)là một số nguyên
Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}̀\)và \(B=\frac{2013}{51}+\frac{2013}{52}+...+\frac{2013}{100}\). Chứng minh rằng \(\frac{B}{A}\)là một số nguyên
Cho A=\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
B=\(\frac{2015}{51}+\frac{2015}{52}+\frac{2015}{53}+...+\frac{2015}{100}\)
Chứng minh rằng B:A có giá trị là một số nguyên
Cho \(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)và \(B=\frac{2011}{51}+\frac{2011}{52}+\frac{2011}{53}+...+\frac{2011}{100}\)
Chứng minh rằng \(\frac{B}{A}\)là một số nguyên
chứng minh: \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(ChoA=\frac{2013}{2}+\frac{2013}{3}+\frac{2013}{4}+...+\frac{2013}{2013}\) và B=\(\frac{2013}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}\)Tính\(\frac{A}{B}\)
Chứng minh rằng:
a)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}< \frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
b)\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}< 1-\frac{1}{2.3}\)
Cần gấp, ai nhanh mik tick nha
Cho A = \(\frac{1}{1.2}\) + \(\frac{1}{3.4}\) + \(\frac{1}{5.6}\) +...+\(\frac{1}{99.100}\) & B = \(\frac{2011}{51} \) + \(\frac{2011}{52}\) + \(\frac{2011}{53} +...+\frac{2011}{100}\)
Chứng minh rằng \(\frac{A}{B}\) là một số nguyên